跟着Cell学单细胞转录组分析(十):Monocle2拟时分析演示之结果可视化(下)

上节完成了拟时分析,剩下的内容就比较简单了,只需要可视化。我们可视化一些一般文章中出现的图。用到的文件是上节分析得到的cds文件。图的主题可以结合ggplot2进行修饰。

先做一个细胞群的谱系分化图。从这个图可以看出我们关注的细胞分化轨迹。


library(ggsci)
plot_cell_trajectory(cds, color_by = "Cluster")  + scale_color_nejm()

plot_cell_trajectory(cds, color_by = "State")  + scale_color_npg()

plot_cell_trajectory(cds, color_by = "Pseudotime")

如果细胞轨迹全部在一起,很难看出不同细胞状态在分支上的位置,这时,我们可以将每个状态单独画出来,看起来比较清晰。


plot_cell_trajectory(cds, color_by = "State") +
  facet_wrap(~State, nrow = 1)

处理细胞谱系拟时可视化,我们还关注分化轨迹过程中基因的情况。选定关注的基因,看看其在拟时中的表达。

pData(cds)$TGFBR2 = log2( exprs(cds)['TGFBR2',]+1)

通过拟时基因表达模式聚类。

cds$id <- rownames(cds)
library(dplyr)
cds %>% arrange(qval) %>% head(10) %>% select(id) -> gene_to_cluster
gene_to_cluster <- gene_to_cluster$id
my_pseudotime_cluster <- plot_pseudotime_heatmap(cds[gene_to_cluster,],
                                                 num_clusters = 3,
                                                 cores = 8,
                                                 show_rownames = TRUE)

BEAM进行统计分析。

BEAM_res <- BEAM(my_cds_subset, branch_point = 1, cores = 8)
BEAM_res <- BEAM_res[order(BEAM_res$qval),]
BEAM_res <- BEAM_res[,c("gene_short_name", "pval", "qval")]
head(BEAM_res)
table(BEAM_res$qval < 1e-4)
plot_genes_branched_heatmap(my_cds_subset[row.names(subset(BEAM_res, qval < 1e-4)),],
                            branch_point = 1,
                            num_clusters = 4,
                            cores = 8,
                            use_gene_short_name = TRUE,
                            show_rownames = TRUE)

拟时分析的内容很丰富,也很多,在不同的研究中有不同的意义,这里只是简单展示了几种常见的可视化结果,对于结果的解读,应用,还需要结合具体的生物学意义,通过推断与生物学背景结合,才能让分析彰显意义。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值