seurat选取细胞 手动选择细胞 selected.cells select.cells圈出细胞 手动提取细胞 圈出细胞cellselector 挑选选择

这篇博客展示了如何利用Monocle进行单细胞RNA测序数据的分析,包括UMAP降维、细胞选择、轨迹绘图、基因表达扰动和多因素差异表达分析。通过`plot_cell_trajectory`函数以不同维度展示细胞状态、聚类和样本差异,并使用`plot_genes_jitter`和`differentialGeneTest`函数深入探究基因表达变化和差异表达分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

plot <- DimPlot(subset_data, reduction = "umap") 
select.cells <- CellSelector(plot = plot) 
head(select.cells)
subset_data=subset(subset_data,cells=select.cells)

https://www.jianshu.com/p/e79ab1cc0a67

plot_cell_trajectory(HSMM_myo, color_by = "State",cell_size = 0.75)
 ####以state进行着色
 
plot_cell_trajectory(HSMM_myo, color_by = "State",cell_size = 0.75)+facet_wrap(~State, nrow = Cluster_num) 
##绘制state的分面图

plot_cell_trajectory(HSMM_myo, color_by = "Pseudotime",cell_size = 0.75) 
##根据拟时间值着色

plot_cell_trajectory(HSMM_myo, color_by = "Cluster",cell_size = 0.75)
 ##根据细胞聚类的进行着色
 
plot_cell_trajectory(HSMM_myo, color_by = "Cluster",cell_size = 0.75)+facet_wrap(~Cluster, nrow =Cluster_num)
 ###绘制clusster的分面图
 
plot_cell_trajectory(HSMM_myo, color_by = "seurat_clusters",cell_size = 0.75) +scale_color_manual(values=col) 
##如果有Seurat生的rds文件的话,按照seurat中分的群进行着色,如果不想用ggplot的默认色,可以提供颜色列表col list。

plot_cell_trajectory(HSMM_myo, color_by = "seurat_clusters", cell_size = 0.75) + facet_wrap (~seurat_clusters, nrow =Cluster_num) 
###按照seurat中分的群绘制分面图。

plot_cell_trajectory(HSMM_myo, color_by = "stim",cell_size = 0.75) 
###按照样本进行着色

plot_cell_trajectory(HSMM_myo, color_by = "stim",cell_size = 0.75)+facet_wrap(~stim, ncol = 2)
##绘制样本着色的分面图。

https://www.jianshu.com/p/66c387e1de3d

blast_genes <- row.names(subset(fData(HSMM),
                                gene_short_name %in% c("CCNB2", "NOC2L", "CDC20")))
plot_genes_jitter(HSMM[blast_genes,],
                  grouping = "State",
                  min_expr = 0.1)

在这里插入图片描述

单个基因的时间变化(我可以随意选择基因而你不可以,你要选有意义的生活)

HSMM_expressed_genes <-  row.names(subset(fData(HSMM),
                                          num_cells_expressed >= 10))
HSMM_filtered <- HSMM[HSMM_expressed_genes,]
my_genes <- row.names(subset(fData(HSMM_filtered),
                             gene_short_name %in% c("YWHAB", "ICAM2", "ICAM2")))
cds_subset <- HSMM_filtered[my_genes,]
plot_genes_in_pseudotime(cds_subset, color_by = "seurat_clusters")

在这里插入图片描述

Multi-Factorial Differential Expression Analysis
Monocle可以在多个因素存在的情况下进行差异分析,这可以帮助你减去一些因素来看到其他因素的影响。在下面的简单例子中,Monocle测试了三个基因在成肌细胞和成纤维细胞之间的差异表达,同时减去percent.mt的影响。为此,我们必须同时指定完整模型和简化模型。完整的模型同时捕捉细胞类型和percent.mt的影响

to_be_tested <-
  row.names(subset(fData(HSMM),
                   gene_short_name %in% c("TPM1", "MYH3", "CCNB2", "GAPDH")))

cds_subset <- HSMM[to_be_tested,]

diff_test_res <- differentialGeneTest(cds_subset,
                                      fullModelFormulaStr = "~CellType + percent.mt",
                                      reducedModelFormulaStr = "~percent.mt")
diff_test_res[,c("gene_short_name", "pval", "qval")]

      gene_short_name       pval      qval
GAPDH           GAPDH 0.07990737 0.1598147
CCNB2           CCNB2 0.04148172 0.1598147
TPM1             TPM1 0.90861287 0.9086129
MYH3             MYH3 0.77085745 0.9086129

plot_genes_jitter(cds_subset,
                  grouping = "seurat_clusters", color_by = "CellType", plot_trend = TRUE) +
  facet_wrap( ~ feature_label, scales= "free_y")

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值