GEO Accession viewer
GEO Accession viewerNCBI's Gene Expression Omnibus (GEO) is a public archive and resource for gene expression data.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65682
2. 拿相应的细胞Marker进行注释再看看,其实前一个注释结果就够(T细胞Mareker) --------------------------
p=DimPlot(sce,reduction = "umap",label=T )
sce.all = sce
# yT1c=c("GNLY","PTGDS","GZMB","TRDC"),
# yT2c=c("TMN1","HMGB2","TYMS")
genes_to_check =list(
naive=c("CCR7","SELL","TCF7","IL7R","CD27","CD28","LEF1","S1PR1"),
CD8Trm=c("XCL1","XCL2","MYADM"),
NKTc=c("GNLY","GZMA"),
Tfh=c("CXCR5","BCL6","ICA1","TOX","TOX2","IL6ST"),
th17=c("IL17A","KLRB1","CCL20","ANKRD28","IL23R","RORC","FURIN","CCR6","CAPG","IL22"),
CD8Tem=c("CXCR4","GZMH","CD44","GZMK"),
Treg=c("FOXP3","IL2RA","TNFRSF18","IKZF2"),
naive=c("CCR7","SELL","TCF7","IL7R","CD27","CD28"),
CD8Trm=c("XCL1","XCL2","MYADM"),
MAIT=c("KLRB1","ZBTB16","NCR3","RORA"),
yT1c=c("GNLY","PTGDS","GZMB","TRDC"),
yT2c=c("TMN1","HMGB2","TYMS"),
yt=c("TRGV9","TRDV2")
)
genes_to_check = lapply(genes_to_check, str_to_title)
dup=names(table(unlist(genes_to_check)))[table(unlist(genes_to_check))>1] #取出重名的marker基因
genes_to_check = lapply(genes_to_check, function(x) x[!x %in% dup]) #取出未重名的基因
p_all_markers=DotPlot(sce.all, group.by = "RNA_snn_res.0.8",
features = genes_to_check,
scale = T,assay='RNA' )+
theme(axis.text.x=element_text(angle=45,hjust = 1))
p_all_markers+p
ggsave('check_cd4_and_cd8T_markers.pdf',width = 9 )
# 拆成细胞类型对应的细胞list(CyclingT、CytoticT、NaiveT)
cell_list = split(colnames(sce.all),sce.all$celltype)
cell_list#获得相应细胞类型,对应的样本ID
names(cell_list)
# 4.每个celltype不同分组之间差异分析 ----
dir.create("./by_celltype")
setwd("./by_celltype/")
getwd()
# 4.每个celltype不同分组之间差异分析 ----
dir.create("./by_celltype")
setwd("./by_celltype/")
getwd()
# 利用FindAllMarkers进行差异分析---整个流程值得借鉴(针对每一种细胞类型在组别间分别进行差异分析)
# 保存每一种细胞类型的差异分析结果、对应细胞类型topMarker的Rdata、每种细胞类型top10气泡图与热图
for ( pro in names(cell_list) ) {
#pro=names(cell_list)[1]
sce=sce.all[,colnames(sce.all) %in% cell_list[[pro]]]
sce <- CreateSeuratObject(counts = sce@assays$RNA@counts,
meta.data = sce@meta.data,
min.cells = 3,
min.features = 200)
sce <- NormalizeData(sce)
sce = FindVariableFeatures(sce)
sce = ScaleData(sce,
vars.to.regress = c("nFeature_RNA",
"percent_mito"))
Idents(sce)=sce$group #组别信息;后续用组别信息比较(赋值ident)
table(Idents(sce))
# 利用FindAllMarkers进行差异分析
sce.markers <- FindAllMarkers(object = sce,
only.pos = TRUE,
logfc.threshold = 0.2,
min.pct = 0.2,
thresh.use = 0.2)
write.csv(sce.markers,file=paste0(pro,'_sce.markers.csv'))
sce.markers=sce.markers[order(sce.markers$cluster,
sce.markers$avg_log2FC),]
library(dplyr)
top10 <- sce.markers %>% group_by(cluster) %>% top_n(10, avg_log2FC)
# sce.Scale <- ScaleData(subset(sce,downsample=100),features = unique(top10$gene) )
sce.Scale <- ScaleData( sce ,features = unique(top10$gene) )
DoHeatmap(sce.Scale,
features = unique(top10$gene),
# group.by = "celltype",
assay = 'RNA', label = T)+
scale_fill_gradientn(colors = c("white","grey","firebrick3"))
ggsave(filename=paste0(pro,'_sce.markers_heatmap.pdf'),
height = 8)
p <- DotPlot(sce , features = unique(top10$gene) ,
assay='RNA' ) + coord_flip()
p
ggsave(plot=p,
filename=paste0("check_top10-marker_by_",
pro,"_cluster.pdf")
,height = 8)
save(sce.markers,
file=paste0(pro,'_sce.markers.Rdata'))
}
细胞比例图
library(ggsci)
ggplot(bar_per, aes(x = Var1, y = percent)) +
geom_bar(aes(fill = Var2) , stat = "identity") + coord_flip() +
theme(axis.ticks = element_line(linetype = "blank"),
legend.position = "top",
panel.grid.minor = element_line(colour = NA,linetype = "blank"),
panel.background = element_rect(fill = NA),
plot.background = element_rect(colour = NA)) +
labs(y = "% Relative cell source", fill = NULL)+labs(x = NULL)+
scale_fill_d3() #分组之间各种细胞占比
ggsave("celltype_by_group_percent.pdf",
units = "cm",width = 20,height = 12)
## 4.2 每种细胞类型中,各个样本所占比例 ----
bar_data <- as.data.frame(table(phe$celltype,phe$orig.ident))
bar_per <- bar_data %>%
group_by(Var1) %>%
mutate(sum(Freq)) %>%
mutate(percent = Freq / `sum(Freq)`)
bar_per
write.csv(bar_per,file = "celltype_by_orig.ident_percent.csv")
ggplot(bar_per, aes(x = Var1, y = percent)) +
geom_bar(aes(fill = Var2) , stat = "identity") + coord_flip() +
theme(axis.ticks = element_line(linetype = "blank"),
legend.position = "top",
panel.grid.minor = element_line(colour = NA,linetype = "blank"),
panel.background = element_rect(fill = NA),
plot.background = element_rect(colour = NA)) +
labs(y = "% Relative cell source", fill = NULL)+labs(x = NULL)
ggsave("celltype_by_orig.ident_percent.pdf",units = "cm",
width = 20,height = 12)

#自建函数# 自定义绘图函数,运行即可
head(phe)
plot_percent <- function(x,y){
# x <- "group"
# y <- "celltype"
plot_data <- data.frame(table(phe[, x ],
phe[, y ]))
plot_data$Total <- apply(plot_data,1,function(x)sum(plot_data[plot_data$Var1 == x[1],3]))
plot_data <- plot_data %>% mutate(Percentage = round(Freq/Total,3) * 100)
pro <- x
write.table(plot_data,paste0(pro,"_celltype_proportion.txt"),quote = F)
th=theme(axis.text.x = element_text(angle = 45,
vjust = 0.5, hjust=0.5))
library(paletteer)
color <- c(paletteer_d("awtools::bpalette"),paletteer_d("awtools::a_palette"),paletteer_d("awtools::mpalette"))
ratio1 <- ggplot(plot_data,aes(x = Var1,y = Percentage,fill = Var2)) +
geom_bar(stat = "identity",position = "stack") +
scale_fill_manual(values = color)+
theme_classic() +
theme(axis.title.x = element_blank()) + labs(fill = "Cluster") +th
ratio1
f=paste0('ratio_by_',x,'_VS_',y)
h=floor(5+length(unique(plot_data[,1]))/2)
w=floor(3+length(unique(plot_data[,2]))/2)
ggsave(paste0('bar1_',f,'.pdf'),ratio1,height = h ,width = w )
pdf(paste0('balloonplot_',f,'.pdf'),height = 12 ,width = 20)
balloonplot(table(phe[, x ],
phe[, y ]))
dev.off()
plot_data$Total <- apply(plot_data,1,function(x)sum(plot_data[plot_data$Var1 == x[1],3]))
plot_data<- plot_data %>% mutate(Percentage = round(Freq/Total,3) * 100)
bar_Celltype=ggplot(plot_data,aes(x = Var1,y = Percentage,fill = Var2)) +
geom_bar(stat = "identity",position = "stack") +
theme_classic() +
theme(axis.text.x=element_text(angle=45,hjust = 1)) + labs(fill = "Cluster")+
facet_grid(~Var2,scales = "free")
bar_Celltype
ggsave(paste0('bar2_',f,'.pdf'),bar_Celltype,height = 8 ,width = 40)
}
## 4.3 每个分组中,不同细胞类型所占比例 ----
plot_percent("group","celltype")
## 4.4 每个分组中,不同细胞类型所占比例 ----
plot_percent("orig.ident","celltype")
#分组富集分析
getwd() #"G:/linux study/hsp70_human/ref/201023国庆授课检查版/4_group"
setwd("G:/linux study/hsp70_human/ref/201023国庆授课检查版/4_group")
dir.create("../5_GO_KEGG")
setwd("../5_GO_KEGG/")
getwd() #"G:/linux study/hsp70_human/ref/201023国庆授课检查版/5_GO_KEGG"
# 对各个亚群的topMarker基因进行降维聚类分群 -----------------------------------------------
## 3.1 kegg and go by cluster ----
# 只针对find的各个亚群top基因
# 现在我们选择了COSG算法
if(T){
# 3.all 读取数据富集分析-
## 3.1 kegg and go by cluster 可视化 ----
f = '../3-cell/harmony-sce.markers.Rdata' #决定了找簇与簇的显著富集的KEGG通路
# 这个Rdata数据源于step3.1,针对簇利用FindAllMarker找簇的Top Marker 基因
if(file.exists(f)){
load(file = f)
sce.markers=sce.markers[sce.markers$avg_log2FC > 0,]
top1000 <- sce.markers %>% group_by(cluster) %>% top_n(1000, avg_log2FC)
head(top1000)
library(ggplot2)
ids=bitr(top1000$gene,'SYMBOL','ENTREZID','org.Mm.eg.db')
top1000=merge(top1000,ids,by.x='gene',by.y='SYMBOL')
gcSample=split(top1000$ENTREZID, top1000$cluster) #分组太强大了 切割 按照组别切割split
gcSample # entrez id , compareCluster
names(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
organism="mmu")
str(xx)
p=dotplot(xx)
p+ theme(axis.text.x = element_text(angle = 45,
vjust = 0.5, hjust=0.5))
ggsave('compareCluster-KEGG-top1000-cluster.pdf',width = 18,height = 8)
xx <- compareCluster(gcSample, fun="enrichGO",
OrgDb='org.Mm.eg.db')
summary(xx)
p=dotplot(xx)
p+ theme(axis.text.x = element_text(angle = 90,
vjust = 0, hjust=1))
ggsave('compareCluster-GO-top1000-cluster.pdf',width = 15,height = 12)
}}

