PCL三维特征

PCL(Point Cloud Library)提供了点云数据的三维特征提取方法,包括概念、输入处理和应用场景。特征提取旨在解决点云比较的不确定性,如通过局部描述符捕获表面几何信息。常用特征如法线、PFH、FPFH和VFH等,用于点云的表面分析、目标识别和位姿估计。特征估计考虑了刚性变换、采样密度变化和噪声影响,并使用kd树进行近邻搜索。
摘要由CSDN通过智能技术生成

概念

在点云的原生表示中,3D映射系统中将点云中的点相对于给定原点的笛卡尔坐标下x、y、z表示。

假设坐标系的原点不随时间变化,在t1和t2处可能有两个点p1和p2,具有相同的坐标。然而,比较这些点是一个不适定问题,因为即使它们在某些距离度量(例如欧几里德度量)上是相等的,它们也可以在完全不同的曲面上采样,因此当与它们附近的其他周围点一起采集时,它们代表完全不同的信息。这是因为不能保证世界在t1和t2之间没有变化。一些采集设备可能会为采样点提供额外信息,例如强度或表面缓解值,甚至颜色,但是这并不能完全解决问题,而且比较仍然不明确。通俗的讲就是同一个点在不同时刻可以是平面上的也可以是球面上的,周围点是必然不同的

由于各种原因需要比较点的应用程序需要更好的特性和度量,以便能够区分几何曲面。因此,三维点作为笛卡尔坐标的奇异实体的概念消失了,取而代之的是一个新的概念,即局部描述符。文献中有大量描述相同概念的不同命名方案,例如形状描述符或几何特征,但对于本文档的其余部分,它们将被称为点特征表示。

通过包含周围的邻域,可以在特征描述中推断并捕获下一层采样曲面的几何特征,有助于解决模糊度比较问题。理想情况下,对于位于相同或相似表面上的点,生成的特征将非常相似(相对于某些度量),对于位于不同表面上的点,生成的特征将不同,如下图所示。一个好的点特征表示与一个坏的点特征表示不同,它能够在以下情况下捕获相同的局部表面特征:

  • 刚性变换:即数据中的三维旋转和三维平移不应影响生成的特征向量F估计;

  • 改变采

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值