异常检测:综述(基本都是无监督算法)【时间序列算法:AR/MA/ARMA】【传统机器学习算法:孤独森林、One Class SVM】【深度学习算法:AutoEncoder、LSTM、DeepLog】

本文概述了异常检测的重要性,介绍了异常检测算法的选择策略,包括时间序列算法(AR、MA、ARMA等)、传统机器学习算法(孤独森林、One Class SVM)和深度学习算法(AutoEncoder、LSTM、DeepLog)的应用,强调了各类算法在不同场景下的适用性和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是异常值?

在机器学习中,异常检测和处理是一个比较小的分支,或者说,是机器学习的一个副产物,因为在一般的预测问题中,模型通常是对整体样本数据结构的一种表达方式,这种表达方式通常抓住的是整体样本一般性的性质,而那些在这些性质上表现完全与整体样本不一致的点,我们就称其为异常点,通常异常点在预测问题中是不受开发者欢迎的,因为预测问题通产关注的是整体样本的性质,而异常点的生成机制与整体样本完全不一致,如果算法对异常点敏感,那么生成的模型并不能对整体样本有一个较好的表达,从而预测也会不准确。

从另一方面来说,异常点在某些场景下反而令分析者感到极大兴趣,如疾病预测,通常健康人的身体指标在某些维度上是相似,如果一个人的身体指标出现了异常,那么他的身体情况在某些方面肯定发生了改变,当然这种改变并不一定是由疾病引起(通常被称为噪音点),但异常的发生和检测是疾病预测一个重要起始点。相似的场景也可以应用到信用欺诈,网络攻击等等。

二、异常检测算法的选择策略

对时间序列数据异常检测的算法选择策略:算法的选择不是随意的,也不是漫无目的地试错获得的。而是通过对业务和数据了解后,初选多个候选算法,然后通过训练和评估选择最优组合。

  • 稳定序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值