《Approaching (Almost) Any Machine Learning Problem/解决几乎任何机器学习问题》

本文详述了解决机器学习问题的通用流程,包括数据预处理、模型选择、超参数优化等步骤。作者强调,大部分时间花费在数据转换,而模型应用涉及数据清理、表格化、标签定义、评估指标选择、库的使用以及模型框架。文中提到了pandas、scikit-learn、xgboost等关键库,并推荐了基于集成树的模型如RandomForest、XGBoost。此外,还介绍了特征工程、数据分解方法如PCA和SVD,以及特征选择策略。
摘要由CSDN通过智能技术生成

解决几乎任何机器学习问题(完整翻译)

英文原文:Approaching (Almost) Any Machine Learning Problem

Kaggle团队| 07.21.2016

Kaggle大师Abhishek Thakur最初在2016年7月18日在这里发表了这篇文章。


一个数据科学家每天处理大量的数据。有人说,超过60-70%的时间花在了数据清理,数据转移和数据采集上,使得机器学习模型可以应用于这些数据。这篇文章的重点是第二部分,即应用机器学习模型,包括预处理步骤。这篇文章讨论的流水线是我参加过的一百多次机器学习比赛的结果。必须指出的是

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
近乎任何机器学习问题解决方法有几个基本的步骤。 首先,了解问题。这包括明确问题的定义、目标和约束。要知道要解决什么问题,以及问题的局限性和可行性是什么。 其次,数据的准备和理解是非常重要的。需要收集和整理相关数据,并对数据进行探索性分析,以了解数据的特征、分布和关联性。其中,数据清洗是非常关键的步骤,包括处理缺失值、异常值和重复值等。同时,了解数据的背景和特点也是必要的,这有助于选择合适的特征工程方法。 第三步是选择适当的模型和算法。根据问题的性质和数据的特点,选择合适的机器学习模型和算法。常见的机器学习算法包括线性回归、逻辑回归、决策树、随机森林、支持向量机、神经网络等。在选择模型和算法时,需要考虑模型的复杂度、泛化能力和计算效率等因素。 接下来是模型的训练和评估。使用数据集将选择的模型进行训练,调整模型的参数和超参数,并使用评估指标对模型进行评估。常见的评估指标包括准确率、精确率、召回率、F1值等。 最后,是模型的调优和部署。根据评估结果,对模型进行调优,包括调整模型结构、正则化、特征选择等。在调优过程中可以使用交叉验证等方法对模型进行验证。最后,将训练好的模型部署到实际应用中,并进行后续的监测和维护。 以上是近乎任何机器学习问题的一般解决方法。然而,每个问题都有其独特的特点和挑战,需要根据具体情况进行调整和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值