数学分析(十)-定积分的应用3-1-平面曲线的弧长1:弧长概念【设C是一没有自交点的非闭的平面曲线,从A到B依次取分点Pᵢ对C的一个分割T;s=∑∣Pᵢ₋₁Pᵢ∣,‖T‖➝0时s的极限定义为“弧长”】

本文介绍了平面曲线的弧长概念,通过定义一个没有自交点的非闭曲线C,并从A到B取一系列分点形成分割T,当分割趋于细小时,各分点间线段长度之和的极限被定义为曲线的弧长。这一数学分析方法揭示了可求长曲线的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先建立曲线弧长的概念.
在这里插入图片描述

C = A B ^ C=\widehat{A B} C=AB 是一条没有自交点的非闭的平面曲线.如图 10-16 所示, 在 C C C 上从 A A A B B B 依次取分点:

A = P 0 , P 1 , P 2 , ⋯   , P n − 1 , P n = B , A=P_{0}, P_{1}, P_{2}, \cdots, P_{n-1}, P_{n}=B, A=P0,P1,P2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值