§9 有理系数多项式
现在再来看有理数域上一元多项式的因式分解.作为因式分解定理的一个特殊情形,我们有,每个次数
⩾ 1 \geqslant 1 ⩾1
的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积.
但是对于任意一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,
即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,
这一点是有理数域与实数域、复数域不同的.在复数域上只有一次多项式才是不可约的,而在实数域上不可约多项式只有一次的和某些二次的.我们不打算一般地来讨论这些问题,
在这一节我们主要是指出有理系数多项式的两个重要的事实. 第一,
有理系数多项式的因式分解的问题, 可以归结为整 (数)
系数多项式的因式分解问题, 并进而解决求有理系数多项式的有理根的问题.
第二, 在有理系数多项式环中有任意次数的不可约多项式.
设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} f(x)=anxn+an−1xn−1+⋯+a0
是一有理系数多项式. 选取适当的整数 c c c 乘 f ( x ) f(x) f(x), 总可以使 c f ( x ) c f(x) cf(x)
是一整系数多项式. 如果 c f ( x ) c f(x) cf(x) 的各项系数有公因子, 就可以提出来, 得到
c f ( x ) = d g ( x ) , c f(x)=d g(x), cf(x)=dg(x),
也就是
f ( x ) = d c g ( x ) , f(x)=\frac{d}{c} g(x), f(x)=cdg(x),
其中 g ( x ) g(x) g(x) 是整系数多项式,且各项系数没有异于 ± 1 \pm 1 ±1 的公因子. 例如,
2 3 x 4 − 2 x 2 − 2 5 x = 2 15 ( 5 x 4 − 15 x 2 − 3 x ) . \frac{2}{3} x^{4}-2 x^{2}-\frac{2}{5} x=\frac{2}{15}\left(5 x^{4}-15 x^{2}-3 x\right) . 32x4−2x2−52x=152(5x4−15x2−3x).
如果一个非零的整系数多项式
g ( x ) = b n x n + b n − 1 x n − 1 + ⋯ + b 0 g(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} g(x)=bnxn+bn−1xn−1+⋯+b0 的系数
b n , b n − 1 , ⋯ , b 0 b_{n}, b_{n-1}, \cdots, b_{0} bn,bn−1,⋯,b0 没有异于 ± 1 \pm 1 ±1 的公因子, 也就是说,
它们是互素的, 它就称为一个本原多项式.
上面的分析表明,任何一个非零的有理系数多项式 f ( x ) f(x) f(x)
都可以表示成一个有理数 r r r 与一个本原多项式 g ( x ) g(x) g(x) 的乘积, 即
f ( x ) = rg ( x ) . f(x)=\operatorname{rg}(x) . f(x)=rg(x).
可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果
f ( x ) = r g ( x ) = r 1 g 1 ( x ) , f(x)=r g(x)=r_{1} g_{1}(x), f(x)=rg(x)=r1g1(x),
其中 g ( x ) , g 1 ( x ) g(x), g_{1}(x) g(x),g1(x) 都是本原多项式,那么必有
r = ± r 1 , g ( x ) = ± g 1 ( x ) . r= \pm r_{1}, \quad g(x)= \pm g_{1}(x) . r=±r1,g(x)=±g1(x).
因为 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 只差一个常数倍, 所以 f ( x ) f(x) f(x) 的因式分解问题,
可以归结为本原多项式 g ( x ) g(x) g(x) 的因式分解问题.下面我们进一步指出,
一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.作为准备,我们先证
定理 10 (高斯引理) 两个本原多项式的乘积还是本原多项式.
证明 设
f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 0 , g ( x ) = b m x m + b m − 1 x m − 1 + ⋯ + b 0 f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, \quad g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0} f(x)=anxn+an−1xn−1+⋯+a0,g(x)=