§ 7 克拉默 (C ramer) 法则
现在我们来应用行列式解决线性方程组的问题.
在这里只考虑方程个数与未知量的个数相等的情形. 以后会看到,
这是一个重要的情形.
至于更一般的情形留到下一章讨论.下面我们将得出与二元和三元线性方程组相仿的公式.
本节的主要结果是
定理 4 如果线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \end{array}\right. ⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯⋯an1x1+an2x2+⋯+annxn=bn
的系数矩阵
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) A=\left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right) A=
a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann
的行列式, 即系数行列式
d = ∣ A ∣ ≠ 0 , d=|\boldsymbol{A}| \neq 0, d=∣A∣=0,
那么线性方程组 (1) 有解, 并且解是唯一的, 解可以通过系数表为
x 1 = d 1 d , x 2 = d 2 d , ⋯ , x n = d n d , x_{1}=\frac{d_{1}}{d}, \quad x_{2}=\frac{d_{2}}{d}, \cdots, \quad x_{n}=\frac{d_{n}}{d}, x1=dd1,x2=dd2,⋯,xn=ddn,
其中 d j d_{j} dj 是把矩阵 A \boldsymbol{A} A 中第 j j j 列换成方程组的常数项
b 1 , b 2 , ⋯ , b n b_{1}, b_{2}, \cdots, b_{n} b1,b2,⋯,bn 所成的矩阵的行列式, 即
d j = ∣ a 11 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 n a 21 ⋯ a 2 , j − 1 b 2 a 2 , j + 1 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n n ∣ , j = 1 , 2 , ⋯ , n . d_{j}=\left|\begin{array}{ccccccc} a_{11} & \cdots & a_{1, j-1} & b_{1} & a_{1, j+1} & \cdots & a_{1 n} \\ a_{21} & \cdots & a_{2, j-1} & b_{2} & a_{2, j+1} & \cdots & a_{2 n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n, j-1} & b_{n} & a_{n, j+1} & \cdots & a_{n n} \end{array}\right|, j=1,2, \cdots, n . dj=
a11a21⋮an1⋯⋯⋯a1,j−1a2,j−1⋮an,j−1b1b2⋮bna1,j+1a2,j+1⋮