概率论与数理统计教程(二)-随机变量及其分布04:常用离散分布

本文介绍了概率论中的常用离散分布,包括二项分布和泊松分布。二项分布适用于n重伯努利试验,如产品不合格率、色盲人数等场景;泊松分布常用于描述单位时间内的随机事件次数,如顾客数量、电磁波冲击次数。文章通过实例解析了分布的计算和应用,并讨论了泊松分布作为二项分布的近似。
摘要由CSDN通过智能技术生成

§ 2.4 常用离散分布
每个随机变量都有一个分布, 不同的随机变量可以有不同的分布,
也可以有相同的分布. 随机变量有千千万万个, 但常用分布并不是很多,
熟悉这些常用分布对认识其他分布会很有启发. 常用分布亦分为两类:
离散分布和连续分布, 本节讲常用离散分布, 下节讲常用连续分布.
2.4.1 二项分布
一、二项分布
如果记 X X X n n n 重伯努利试验中成功 (记为事件 A A A ) 的次数, 则 X X X
的可能取值为 0 , 1 , ⋯   , n 1, \cdots, n 1,,n. 记 p p p 为每次试验中 A A A 发生的概率, 即
P ( A ) = p P(A)=p P(A)=p, 则 P ( A ˉ ) = 1 − p P(\bar{A})=1-p P(Aˉ)=1p.
因为 n n n 重伯努利试验的基本结果可以记作
ω = ( ω 1 , ω 2 , ⋯   , ω n ) , \omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right), ω=(ω1,ω2,,ωn),
其中 ω i \omega_{i} ωi 或者为 A A A, 或者为 A ˉ \bar{A} Aˉ. 这样的 ω \omega ω 共有
2 n 2^{n} 2n 个, 这 2 n 2^{n} 2n 个样本点 ω \omega ω 组成了样本空间 Ω \Omega Ω.
下面求 X X X 的分布列, 即求事件 { X = k } \{X=k\} { X=k} 的概率. 若某个样本点
ω = ( ω 1 , ω 2 , ⋯   , ω n ) ∈ { X = k } \omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right) \in\{X=k\} ω=(ω1,ω2,,ωn){ X=k}
意味着 ω 1 , ω 2 , ⋯   , ω n \omega_{1}, \omega_{2}, \cdots, \omega_{n} ω1,ω2,,ωn 中有 k k k A , n − k A, n-k A,nk
A ˉ \bar{A} Aˉ, 所以由独立性知,
P ( ω ) = p k ( 1 − p ) n − k . P(\omega)=p^{k}(1-p)^{n-k} . P(ω)=pk(1p)nk.
而事件 { X = k } \{X=k\} { X=k} 中这样的 ω \omega ω 共有
( n k ) \left(\begin{array}{l}n \\ k\end{array}\right) (nk) 个, 所以 X X X 的分布列为
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n . P(X=k)=\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}, k=0,1, \cdots, n . P(X=k)=(nk)pk(1p)nk,k=0,1,,n.
这个分布称为二项分布, 记为 X ∼ b ( n , p ) X \sim b(n, p) Xb(n,p).
容易验证其和恒为 1 , 即
∑ k = 0 n ( n k ) p k ( 1 − p ) n − k = [ p + ( 1 − p ) ] n = 1. \sum_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=[p+(1-p)]^{n}=1 . k=0n(nk)pk(1p)nk=[p+(1p)]n=1.
由此可见, 二项概率
( n k ) p k ( 1 − p ) n − k \left(\begin{array}{l}n \\ k\end{array}\right) p^{k}(1-p)^{n-k} (nk)pk(1p)nk 恰好是
n n n 次二项式 ( p + ( 1 − p ) ) n (p+(1-p))^{n} (p+(1p))n 的展开式中的第 k + 1 k+1 k+1 项,
这正是其名称的由来.
二项分布是一种常用的离散分布, 臂如,
- 检查 10 件产品, 10 件产品中不合格品的个数 X X X 服从二项分布
b ( 10 , p ) b(10, p) b(10,p), 其中 p p p为不合格品率.
- 调查 50 个人, 50 个人中患色盲的人数 Y Y Y 服从二项分布 b ( 50 , p ) b(50, p) b(50,p), 其中
p p p 为色盲率.
- 射击 5 次, 5 次中命中次数 Z Z Z 服从二项分布 b ( 5 , p ) b(5, p) b(5,p), 其中 p p p
为射手的命中率.
例 2.4.1 某特效药的临床有效率为 0.95 , 今有 10 人服用, 问至少有 8
人治愈的概率是多少?
解 设 X X X 为 10 人中被治愈的人数, 则 X ∼ b ( 10 , 0.95 ) X \sim b(10,0.95) Xb(10,0.95), 而所求概率为
P ( X ⩾ 8 ) = P ( X = 8 ) + P ( X = 9 ) + P ( X = 10 ) = ( 10 8 ) 0.9 5 8 0.0 5 2 + ( 10 9 ) 0.9 5 9 0.05 + ( 10 10 ) 0.9 5 10 = 0.0746 + 0.3151 + 0.5987 = 0.9884. \begin{aligned} P(X \geqslant 8) & =P(X=8)+P(X=9)+P(X=10) \\ & =\left(\begin{array}{c} 10 \\ 8 \end{array}\right) 0.95^{8} 0.05^{2}+\left(\begin{array}{c} 10 \\ 9 \end{array}\right) 0.95^{9} 0.05+\left(\begin{array}{c} 10 \\ 10 \end{array}\right) 0.95^{10} \\ & =0.0746+0.3151+0.5987=0.9884 . \end{aligned} P(X8)=P(X=8)+P(X=9)+P(X=10)=(108)0.9580.052+(109)0.9590.05+(1010)0.9510=0.0746+0.3151+0.5987=0.9884.
10 人中至少有 8 人被治愈的概率为 0.9884 .
例 2.4.2 设随机变量 X ∼ b ( 2 , p ) , Y ∼ b ( 3 , p ) X \sim b(2, p), Y \sim b(3, p) Xb(2,p),Yb(3,p). 若
P ( X ⩾ 1 ) = 5 / 9 P(X \geqslant 1)=5 / 9 P(X1)=5/9, 试求 P ( Y ⩾ 1 ) P(Y \geqslant 1) P(Y1).
解 由 P ( X ⩾ 1 ) = 5 / 9 P(X \geqslant 1)=5 / 9 P(X1)=5/9, 知 P ( X = 0 ) = 4 / 9 P(X=0)=4 / 9 P(X=0)=4/9, 所以
( 1 − p ) 2 = 4 / 9 (1-p)^{2}=4 / 9 (1p)2=4/9, 由此得 p = 1 / 3 p=1 / 3 p=1/3. 再由 Y ∼ b ( 3 , p ) Y \sim b(3, p) Yb(3,p) 可得
P ( Y ⩾ 1 ) = 1 − P ( Y = 0 ) = 1 − ( 1 − 1 3 ) 3 = 19 27 . P(Y \geqslant 1)=1-P(Y=0)=1-\left(1-\frac{1}{3}\right)^{3}=\frac{19}{27} . P(Y1)=1P(Y=0)=1(131)3=2719.
二、二点分布
n = 1 n=1 n=1 时的二项分布 b ( 1 , p ) b(1, p) b(1,p) 称为二点分布, 或称 0-1 分布,
或称伯努利分布, 其分布列为
P ( X = x ) = p x ( 1 − p ) 1 − x , x = 0 , 1. P(X=x)=p^{x}(1-p)^{1-x}, \quad x=0,1 . P(X=x)=px(1p)1x,x=0,1.
或记为
X X X 0 1


P P P 1 − p 1-p 1p P P P
二点分布 b ( 1 , p ) b(1, p) b(1,p) 主要用来描述一次伯努利试验中成功 (记为 A A A ) 的次数 (
0 或 1 ) ) ).
很多随机现象的样本空间 Ω \Omega Ω 常可一分为二, 记为 A A A A ˉ \bar{A} Aˉ,
由此形成伯努利试验. n n n重伯努利试验是由 n n n
个相同的、独立进行的伯努利试验组成, 若将第 i i i 个伯努利试验中 A A A
出现的次数记为 X i ( i = 1 , 2 , ⋯   , n ) X_{i}(i=1,2, \cdots, n) Xi(i=1,2,,n), 由于 n n n 重伯努利试验中,
每个伯努利试验是相互独立的, 故其产生的 n n n 个随机变量
X 1 , X 2 , ⋯   , X n X_{1}, X_{2}, \cdots, X_{n} X1,X2,,Xn 也相互独立 (随机变量的独立性定义见 §3.2),
且服从相同的二点分布 b ( 1 , p ) b(1, p) b(1,p). 此时其和
X = X 1 + X 2 + ⋯ + X n X=X_{1}+X_{2}+\cdots+X_{n} X=X1+X2++Xn
就是 n n n 重伯努利试验中 A A A 出现的总次数, 它服从二项分布 b ( n , p ) b(n, p) b(n,p).
这就是二项分布 b ( n , p ) b(n, p) b(n,p) 与二点分布 b ( 1 , p ) b(1, p) b(1,p) 之间的联系,
即服从二项分布的随机变量总可分解为 n n n 个独立同为二点分布的随机变量之和.
三、二项分布的数学期望和方差
设随机变量 X ∼ b ( n , p ) X \sim b(n, p) Xb(n,p), 则
E ( X ) = ∑ k = 0 n k ( n k ) p k ( 1 − p ) n − k = n p ∑ k = 1 n ( n − 1 k − 1 ) p k − 1 ( 1 − p ) ( n − 1 ) − ( k − 1 ) = n p [ p + ( 1 − p ) ] n − 1 = n p . \begin{aligned} E(X) & =\sum_{k=0}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n}\left(\begin{array}{l} n-1 \\ k-1 \end{array}\right) p^{k-1}(1-p)^{(n-1)-(k-1)} \\ & =n p[p+(1-p)]^{n-1}=n p . \end{aligned} E(X)=k=0nk(nk)pk(1p)nk=npk=1n(n1k1)pk1(1p)(n1)(k1)=np[p+(1p)]n1=np.
又因为
E ( X 2 ) = ∑ k = 0 n k 2 ( n k ) p k ( 1 − p ) n − k = ∑ k = 1 n ( k − 1 + 1 ) k ( n k ) p k ( 1 − p ) n − k = ∑ k = 1 n k ( k − 1 ) ( n k ) p k ( 1 − p ) n − k + ∑ k = 1 n k ( n k ) p k ( 1 − p ) n − k = ∑ k = 2 n k ( k − 1 ) ( n k ) p k ( 1 − p ) n − k + n p = n ( n − 1 ) p 2 ∑ k = 2 n ( n − 2 k − 2 ) p k − 2 ( 1 − p ) ( n − 2 ) − ( k − 2 ) + n p = n ( n − 1 ) p 2 + n p . \begin{aligned} E\left(X^{2}\right) & =\sum_{k=0}^{n} k^{2}\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=\sum_{k=1}^{n}(k-1+1) k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k} \\ & =\sum_{k=1}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+\sum_{k=1}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k} \\ & =\sum_{k=2}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+n p \\ & =n(n-1) p^{2} \sum_{k=2}^{n}\left(\begin{array}{l} n-2 \\ k-2 \end{array}\right) p^{k-2}(1-p)^{(n-2)-(k-2)}+n p \\ & =n(n-1) p^{2}+n p . \end{aligned} E(X2)=k=0nk2(

  • 26
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自古以来的短板,有效的提升管理的效率和业务水平。传统的管理模式,时间越久管理的内容越多,也需要更多的人来对数据进行整理,并且数据的汇总查询方面效率也是极其的低下,并且数据安全方面永远不会保证安全性能。结合数据内容管理的种种缺点,在互联网时代都可以得到有效的补充。结合先进的互联网技术,开发符合需求的软件,让数据内容管理不管是从录入的及时性,查看的及时性还是汇总分析的及时性,都能让正确率达到最高,管理更加的科学和便捷。本次开发的高校科研信息管理系统实现了操作日志管理、字典管理、反馈管理、公告管理、科研成果管理、科研项目管理、通知管理、学术活动管理、学院部门管理、科研人员管理、管理员管理等功能。系统用到了关系型数据库中王者MySql作为系统的数据库,有效的对数据进行安全的存储,有效的备份,对数据可靠性方面得到了保证。并且程序也具备程序需求的所有功能,使得操作性还是安全性都大大提高,让高校科研信息管理系统更能从理念走到现实,确确实实的让人们提升信息处理效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值