概率论与数理统计教程(二)-随机变量及其分布05:常用连续分布

本文详细介绍了概率论与数理统计中的正态分布,包括正态分布的定义、性质、标准正态分布、正态变量的标准化以及3σ原则。此外,还讲解了均匀分布的概念、数学期望和方差,并举例说明了指数分布与伽马分布。正态分布是误差理论和许多实际问题中常见的分布,而均匀分布则常用于描述在一定区间内等可能发生的随机事件。
摘要由CSDN通过智能技术生成

§ 2.5 常用连续分布
在连续分布场合, 密度函数与分布函数是可以相互导出的, 含有相同信息,
各有各的用处, 但在图形上密度函数对各种连续分布的特性能得到直观显示.
如正态与偏态、单峰与平顶都是依密度函数图形命名的,
因而人们对密度函数更为注意.
2.5.1 正态分布
正态分布是概率论与数理统计中最重要的一个分布, 高斯 (Gauss, 1777-1855)
在研究误差理论时首先用正态分布来刻画误差的分布,
所以正态分布又称为高斯分布.
本书第四章的中心极限定理表明:一个随机变量如果是由大量微小的、独立的随机因素的叠加结果,那么这个变量一般都可以认为服从正态分布.因此很多随机变量可以用正态分布描述或近似描述,臂如测量误差、产品重量、人的身高、年降雨量等都可用正态分布描述.
一、正态分布的密度函数和分布函数
若随机变量 X X X 的密度函数为
p ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ , p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty, p(x)=2π σ1e2σ2(xμ)2,<x<,
则称 X X X 服从正态分布, 称 X X X 为正态变量, 记作
X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2). 其中参数
− ∞ < μ < ∞ , σ > 0 -\infty<\mu<\infty, \sigma>0 <μ<,σ>0.其密度函数 p ( x ) p(x) p(x) 的图形如图 2.5.1(a)
所示. p ( x ) p(x) p(x) 是一条钟形曲线, 中间高、两边低、左右关于 x = μ x=\mu x=μ 对称,
μ \mu μ 是正态分布的中心, 且在 x = μ x=\mu x=μ 附近取值的可能性大,
在两侧取值的可能性小. μ ± σ \mu \pm \sigma μ±σ
是该曲线的拐点.外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“222px”}
(a) 密度函数
p ( x ) p(x) p(x)外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“222px”}
(b) 分布函数 F ( x ) F(x) F(x)
图 2.5.1 正态分布
正态分布 N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2) 的分布函数为
F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2   d t . F(x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \mathrm{e}^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} t . F(x)=2π σ1xe2σ2(tμ)2 dt.
它是一条光滑上升的 S S S 形曲线, 见图 2.5.1(b).
图 2.5.2 给出了在 μ \mu μ σ \sigma σ 变化时, 相应正态密度曲线的变化情况.
- 从图 2.5.2(a) 中可以看出: 如果固定 σ \sigma σ, 改变 μ \mu μ 的值,
则图形沿 x x x 轴平移, 而不改变其形状. 也就是说正态密度函数的位置由参数
μ \mu μ 所确定, 因此亦称 μ \mu μ 为位置参数.
- 从图 2.5.2(b) 中可以看出: 如果固定 μ \mu μ, 改变 σ \sigma σ 的值,
则分布的位置不变, 但 σ \sigma σ愈小, 曲线呈高而瘦, 分布较为集中; σ \sigma σ
愈大, 曲线呈矮而胖, 分布较为分散. 也就是说正态密度函数的尺度由参数
σ \sigma σ 所确定, 因此称 σ \sigma σ 为尺度参数.
二、标准正态分布
μ = 0 , σ = 1 \mu=0, \sigma=1 μ=0,σ=1 时的正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 为标准正态分布.
通常记标准正态变量为 U U U, 记标准正态分布的密度函数为 φ ( u ) \varphi(u) φ(u),
分布函数为 Φ ( u ) \Phi(u) Φ(u) ,即
φ ( u ) = 1 2 π e − u 2 2 , − ∞ < u < ∞ , \varphi(u)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{u^{2}}{2}}, \quad-\infty<u<\infty, φ(u)=2π 1e2u2,<u<,
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“234px”}
(a) σ \sigma σ 固定, μ \mu μ
值改变外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“234px”}
(b) μ \mu μ 固定, σ \sigma σ 值改变
图2.5.2 正态密度函数
Φ ( u ) = 1 2 π ∫ − ∞ u e − t 2 2   d t , − ∞ < u < ∞ . \Phi(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{u} \mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{~d} t, \quad-\infty<u<\infty . Φ(u)=2π 1ue2t2 dt,<u<∞.
由于标准正态分布的分布函数不含任何未知参数, 故其值
Φ ( u ) = P ( U ⩽ u ) \Phi(u)=P(U \leqslant u) Φ(u)=P(Uu) 完全可以算出, 附表 2 对 u ⩾ 0 u \geqslant 0 u0
给出了 Φ ( u ) \Phi(u) Φ(u) 的值. 对于 Φ ( u ) \Phi(u) Φ(u)
- Φ ( − u ) = 1 − Φ ( u ) \Phi(-u)=1-\Phi(u) Φ(u)=1Φ(u).
- P ( U > u ) = 1 − Φ ( u ) P(U>u)=1-\Phi(u) P(U>u)=1Φ(u).
- P ( a < U < b ) = Φ ( b ) − Φ ( a ) P(a<U<b)=\Phi(b)-\Phi(a) P(a<U<b)=Φ(b)Φ(a).
- P ( ∣ U ∣ < c ) = 2 Φ ( c ) − 1 ( c ⩾ 0 ) P(|U|<c)=2 \Phi(c)-1(c \geqslant 0) P(U<c)=(c)1(c0).
这些等式都不难推得.
例 2.5.1 设 U ∼ N ( 0 , 1 ) U \sim N(0,1) UN(0,1), 利用附表 2 , 求下列事件的概率:
(1) P ( U < 1.52 ) = Φ ( 1.52 ) = 0.9357 P(U<1.52)=\Phi(1.52)=0.9357 P(U<1.52)=Φ(1.52)=0.9357.
(2) P ( U > 1.52 ) = 1 − Φ ( 1.52 ) = 1 − 0.9357 = 0.0643 P(U>1.52)=1-\Phi(1.52)=1-0.9357=0.0643 P(U>1.52)=1Φ(1.52)=10.9357=0.0643.
(3) P ( U < − 1.52 ) = 1 − Φ ( 1.52 ) = 0.0643 P(U<-1.52)=1-\Phi(1.52)=0.0643 P(U<1.52)=1Φ(1.52)=0.0643.
(4)
P ( − 0.75 ⩽ U ⩽ 1.52 ) = Φ ( 1.52 ) − Φ ( − 0.75 ) = Φ ( 1.52 ) − [ 1 − Φ ( 0.75 ) ] = 0.9357 − 1 + 0.7734 = 0.7091. \begin{aligned} P(-0.75 \leqslant U \leqslant 1.52) & =\Phi(1.52)-\Phi(-0.75) \\ & =\Phi(1.52)-[1-\Phi(0.75)] \\ & =0.9357-1+0.7734=0.7091 . \end{aligned} P(0.75U1.52)=Φ(1.52)Φ(0.75)=Φ(1.52)[1Φ(0.75)]=0.93571+0.7734=0.7091.
(5) P ( ∣ U ∣ ⩽ 1.52 ) = 2 Φ ( 1.52 ) − 1 = 2 × 0.9357 − 1 = 0.8714 P(|U| \leqslant 1.52)=2 \Phi(1.52)-1=2 \times 0.9357-1=0.8714 P(U1.52)=(1.52)1=2×0.93571=0.8714.
三、正态变量的标准化
正态分布有一个家族
P = { N ( μ , σ 2 ) : − ∞ < μ < ∞ , σ > 0 } , \mathscr{P}=\left\{N\left(\mu, \sigma^{2}\right):-\infty<\mu<\infty, \sigma>0\right\}, P={ N(μ,σ2):<μ<,σ>0},
标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 是其一个中心成员.
以下定理说明:一般正态变量都可以通过一个线性变换 (标准化)
化成标准正态变量.
因此与正态变量有关的一切事件的概率都可通过查标准正态分布函数表获得.
可见标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) 对一般正态分布 N ( μ N(\mu N(μ,
σ 2 ) \left.\sigma^{2}\right) σ2) 的计算起着关键的作用.
定理 2.5.1 若随机变量 X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2), 则
U = ( X − μ ) / σ ∼ N ( 0 , 1 ) U=(X-\mu) / \sigma \sim N(0,1) U=(Xμ)/σN(0,1).
证明 记 X X X U U U 的分布函数分别为 F X ( x ) F_{X}(x) FX(x) F U ( u ) F_{U}(u) FU(u),
则由分布函数的定义知
F U ( u ) = P ( U ⩽ u ) = P ( X − μ σ ⩽ u ) = P ( X ⩽ μ + σ u ) = F x ( μ + σ u ) . F_{U}(u)=P(U \leqslant u)=P\left(\frac{X-\mu}{\sigma} \leqslant u\right)=P(X \leqslant \mu+\sigma u)=F_{x}(\mu+\sigma u) . FU(u)=P(Uu)=P(σXμu)=P(Xμ+σu)=Fx(μ+σu).
由于正态分布函数是严格单调增函数, 且处处可导, 因此若记 X X X U U U
的密度函数分别为 p x ( x ) p_{x}(x) px(x) p U ( u ) p_{U}(u) pU(u), 则有
p v ( u ) = d d u F x ( μ + σ u ) = p x ( μ + σ u ) ⋅ σ = 1 2 π e − u 2 / 2 , p_{v}(u)=\frac{\mathrm{d}}{\mathrm{d} u} F_{x}(\mu+\sigma u)=p_{x}(\mu+\sigma u) \cdot \sigma=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2}, pv(u)=dudFx(μ+σu)=px(μ+σu)σ=2π 1eu2/2,
由此得
U = X − μ σ ∼ N ( 0 , 1 ) . U=\frac{X-\mu}{\sigma} \sim N(0,1) . U=σXμN(0,1).
由以上定理, 我们马上可以得到一些在实际中有用的计算公式, 若随机变量
X ∼ X \sim X N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2), 则
P ( X ⩽ c ) = Φ ( c − μ σ ) . P ( a < X ⩽ b ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) . \begin{array}{l} P(X \leqslant c)=\Phi\left(\frac{c-\mu}{\sigma}\right) . \\ P(a<X \leqslant b)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) . \end{array} P(Xc)=Φ(σcμ).P(a<Xb)=Φ(σbμ)Φ(σaμ).

例 2.5.2 设随机变量 X X X 服从正态分布 N ( 108 , 3 2 ) N\left(108,3^{2}\right) N(108,32), 试求:
(1) P ( 102 < X < 117 ) P(102<X<117) P(102<X<117);
(2) 常数 a a a, 使得 P ( X < a ) = 0.95 P(X<a)=0.95 P(X<a)=0.95.
解 利用公式 (2.5.4) 及查附表 2 得
(1)
P ( 102 < X < 117 ) = Φ ( 117 − 108 3 ) − Φ ( 102 − 108 3 ) = Φ ( 3 ) − Φ ( − 2 ) = Φ ( 3 ) + Φ ( 2 ) − 1 = 0.9987 + 0.9772 − 1 = 0.9759. \begin{aligned} P(102<X<117) & =\Phi\left(\frac{117-108}{3}\right)-\Phi\left(\frac{102-108}{3}\right) \\ & =\Phi(3)-\Phi(-2)=\Phi(3)+\Phi(2)-1 \\ & =0.9987+0.9772-1=0.9759 . \end{aligned} P(102<X<117)=Φ(3117108)Φ(3102108)=Φ(3)Φ(2)=Φ(3)+Φ(2)1=0.9987+0.97721=0.9759.
(2) 由
P ( X < a ) = Φ ( a − 108 3 ) = 0.95 , 或  Φ − 1 ( 0.95 ) = a − 108 3 , P(X<a)=\Phi\left(\frac{a-108}{3}\right)=0.95 \text {, 或 } \Phi^{-1}(0.95)=\frac{a-108}{3}, P(X<a)=Φ(3a108)=0.95 Φ1(0.95)=3a108,
其中 Φ − 1 \Phi^{-1} Φ1 Φ \Phi Φ 的反函数. 从附表 2 由里向外反查得
Φ ( 1.64 ) = 0.9495 , Φ ( 1.65 ) = 0.9505 , \Phi(1.64)=0.9495, \quad \Phi(1.65)=0.9505, Φ(1.64)=0.9495,Φ(1.65)=0.9505,
再用线性内插法可得 Φ ( 1.645 ) = 0.95 \Phi(1.645)=0.95 Φ(1.645)=0.95, 即 Φ − 1 ( 0.95 ) = 1.645 \Phi^{-1}(0.95)=1.645 Φ1(0.95)=1.645, 故
a − 108 3 = 1.645 ,  \frac{a-108}{3}=1.645 \text {, } 3a108=1.645
从中解得 a = 112.935 a=112.935 a=112.935.
从上例我们可以看出, 有些场合下给定 Φ ( x ) \Phi(x) Φ(x) 的值 p p p, 可以从附表 2
中由里向外反查表来得到 x p x_{p} xp, 使 Φ ( x p ) = p \Phi\left(x_{p}\right)=p Φ(xp)=p
Φ − 1 ( p ) = x p \Phi^{-1}(p)=x_{p} Φ1(p)=xp, 这时 x p x_{p} xp 称为标准正态分布的

  • 13
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值