表示复数 z z z 的位置, 也可以借助于点 z z z 的极坐标 r r r 和 θ \theta θ 来确定(图 1.1). 这里使原点与直角坐标系的原点重合, 极轴与正实轴重合.
下面我们用向量 O z → \overrightarrow{O z} Oz 来表示复数 z = x + i y z=x+\mathrm{i} y z=x+iy,其中 x , y x, y x,y 顺次等于 O z → \overrightarrow{O z} Oz 沿 x x x 轴与 y y y 轴的分量.向量 O z → \overrightarrow{O z} Oz 的长度称为复数 z z z 的模或绝对值, 以符号 ∣ z ∣ |z| ∣z∣ 或 r r r 表示, 因而有
r = ∣ z ∣ = x 2 + y 2 ⩾ 0 , r=|z|=\sqrt{x^{2}+y^{2}} \geqslant 0, r=∣z∣=x2+y2⩾0,
且. ∣ z ∣ = 0 |z|=0