定理 4.14
(1)
幂级数
∑ n = 0 ∞ c n ( z − a ) n ( 4.6 ) \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \quad\quad(4.6) n=0∑∞cn(z−a)n(4.6)
的和函数 f ( z ) f(z) f(z) 在其收敛圆 K : ∣ z − a ∣ < R ( 0 < R ⩽ + ∞ ) K:|z-a|<R (0<R \leqslant+\infty) K:∣z−a∣<R(0<R⩽+∞) 内解析.
(2)
在 K K K 内, 幂级数 (4.6) 可以逐项求导至任意阶, 即
f ( p ) ( z ) = p ! c p + ( p + 1 ) p ⋯ 2 c p + 1 ( z − a ) + ⋯ + n ( n − 1 ) ⋯ ( n − p + 1 ) c n ( z − a ) n − p + ⋯ ( 4.7 ) ( p = 1 , 2 , ⋯ ) \begin{aligned} f^{(p)}(z)= & p ! c_{p}+(p+1) p \cdots 2 c_{p+1}(z-a)+\cdots+ n(n-1) \cdots(n-p+1) c_{n}(z-a)^{n-p}+\cdots \quad\quad(4.7)\\ &\quad(p=1,2, \cdots) \end{aligned} f(p)(z)=p!cp+(p+1)p⋯2cp+1(z−a)+⋯+n(n−1)⋯(n−p+