复变函数论(七)-共形映射1-解析变换的特性3:单叶解析变换的共形性

定义 7.2

如果 w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内是单叶且保角的, 则称此变换 w = f ( z ) w=f(z) w=f(z) D D D 内是共形的, 也称它为 D D D 内的共形映射.


解析变换 w = f ( z ) w=f(z) w=f(z) 在解析点 z 0 z_{0} z0 如有 f ′ ( z 0 ) ≠ 0 f^{\prime}\left(z_{0}\right) \neq 0 f(z0)=0 (由 f ′ ( z ) f^{\prime}(z) f(z) z 0 z_{0} z0的连续性, 必在 z 0 z_{0} z0 的邻域内 ≠ 0 ) \left.\neq 0\right) =0), 于是 w = f ( z ) w=f(z) w=f(z)在点 z 0 z_{0} z0 保角, 因而在 z 0 z_{0} z0 的邻域内单叶保角, 从而在 z 0 z_{0} z0的邻域内共形(局部); 在区域 D D D w = f ( z ) w=f(z) w=f(z) (整体)共形, 必然在 D D D内处处(局部)共形, 但反过来不必真.

例 7.3
讨论解析函数 w = z n w=z^{n} w=zn ( n n n 为正整数) 的保角性和共形性.


(1) 因为

d w   d z = n z n − 1 ≠ 0 ( z ≠ 0 ) , \frac{\mathrm{d} w}{\mathrm{~d} z}=n z^{n-1} \neq 0 \quad(z \neq 0),  dzdw=nzn1=0(z=0),

w = z n w=z^{n} w=zn z z z 平面上除原点 z = 0 z=0 z=0 外, 处处都是保角的.

(2)
由于 w = z n w=z^{n} w=zn 的单叶性区域是顶点在原点张度不超过 2 π n \frac{2 \pi}{n} n2π 的角形区域,故在此角形区域内 w = z n w=z^{n} w=zn 是共形的.在张度超过 2 π n \frac{2 \pi}{n} n2π 的角形区域内, 则不是共形的,但在其中各点的邻域内是共形的 (由定理 7.3).

定理 7.6

w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内单叶解析, 则
(1) w = f ( z ) w=f(z) w=f(z) D D D 共形映射成区域 G = f ( D ) G=f(D)

  • 17
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值