复变函数论(八)-解析延拓1-解析延拓的概念与幕级数延拓2:解析延拓的幂级数方法

本文介绍了复变函数的解析延拓方法,特别是通过幕级数展开实现延拓。讨论了幂级数的收敛半径与函数奇点的关系,并通过例子说明了延拓的条件和限制。
摘要由CSDN通过智能技术生成

给定一个解析函数元素, 求它的解析延拓的最基本的方法是采用幕级数法.

给定解析函数元素 { D , f ( z ) } \{D, f(z)\} { D,f(z)}, 并设 z 1 z_{1} z1 D D D 内的任一点, 则 f ( z ) f(z) f(z) 可在点 z 1 z_{1} z1 的邻域内展成幕级数:

其中
∑ n = 0 ∞ c n ( 1 ) ( z − z 1 ) n , c n ( 1 ) = 1 n ! f ( n ) ( z 1 ) . \begin{array}{l} \sum_{n=0}^{\infty} c_{n}^{(1)}\left(z-z_{1}\right)^{n}, \\ c_{n}^{(1)}=\frac{1}{n !} f^{(n)}\left(z_{1}\right) . \end{array} n=0cn(1)(zz1)n,cn(1)=n!1f(n)(z1).

如果这个级数的收玫半径为 + ∞ +\infty +, 换句话说, 在 z z z 平面上每一点处,级数 (8.1) 都收玫. 这时 (8.1) 的和 f 1 ( z ) f_{1}(z) f1(z) 表示一个在 z z z平面上处处解析的函数, 而在 D D D 内与 f ( z ) f(z) f(z) 相同. 因之,根据解析延拓的惟一性, 这个函数 f 1 ( z ) f_{1}(z) f1(z) 就是 f ( z ) f(z) f(z) D D D以外的解析延拓.如果级数 (8.1) 的收敛半径为有限正数 R 1 R_{1} R1, 且其收玫圆 Γ 1 : ∣ z − z 1 ∣ < R 1 \Gamma_{1}:\left|z-z_{1}\right|<R_{1} Γ1:zz1<R1 部分超出 D D D 外 (否则, 就在 D D D内另选一点 z 1 z_{1} z1, 再重复上面的过程), 则我们在 Γ 1 \Gamma_{1} Γ1内取一个不是圆心 z 1 z_{1} z1 的点 z 2 z_{2} z2, 并在点 z 2 z_{2} z2 的邻域内把 f 1 ( z ) f_{1}(z) f1(z) 展开为幂级数

∑ n = 0 ∞ c n ( z ) ( z − z 2 ) n , \begin{array}{l} \sum_{n=0}^{\infty} c_{n}^{(z)}\left(z-z_{2}\right)^{n}, \\ \end{array} n=0cn(z)(zz2)n,

其中

c n ( 2 ) = 1 n ! f 1 ( n ) ( z 2 ) , \begin{array}{l} c_{n}^{(2)}=\frac{1}{n !} f_{1}^{(n)}\left(z_{2}\right), \end{array} cn(2)=n!1f1(n)(z2),

f 1 ( n ) ( z 2 ) ( n = 0 , 1 , 2 , ⋯   ) f_{1}^{(n)}\left(z_{2}\right)(n=0,1,2, \cdots) f1(n)(z2)(n=0,1,2,) 则由级数 (8.1)计算之.

如级数 (8.2) 的收敛半径为 R 2 R_{2} R2, 则 R 2 R_{2} R2 一定满足不等式

R 2 ⩾ R 1 − ∣ z 2 − z 1 ∣ .  R_{2} \geqslant R_{1}-\left|z_{2}-z_{1}\right| \text {. } R2R1z2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值