在所有收玫数列中,有一类重要的数列, 称为无穷小数列, 其定义如下.
定义 2
若 lim n → ∞ a n = 0 \lim \limits_{n \rightarrow \infty} a_{n}=0 n→∞liman=0, 则称 { a n } \left\{a_{n} \right\} { an} 为无穷小数列.
前面例 1 , 2 , 4 , 6 1,2,4,6 1,2,4,6 中的数列都是无穷小数列. 由无穷小数列的定义, 读者不难证明如下定理.
定理 2.1
数列 { a n ∣ \left\{a_{n} \mid\right. { an∣ 收敛于 a a a 的充要条件是: { a n − a ∣ \left\{a_{n}-a \mid\right. { an−a∣ 为无穷小数列.
最后我们介绍一下无穷大数列的概念.
定义 3
若数列 { a n } \left\{a_{n}\right\}