数学分析(二)-数列极限1-数列极限概念2:无穷小数列、无穷大数列【若lim_{n→∞}(aₙ)=0,称数列{aₙ}为无穷小数列】【若lim_{n→∞}(aₙ)=∞,称数列{aₙ}为无穷大数列】

本文深入探讨数学分析中的无穷小数列和无穷大数列概念。定义了当lim_{n→∞}(aₙ)=0时,数列{aₙ}为无穷小数列;当lim_{n→∞}(aₙ)=∞时,数列{aₙ}为无穷大数列。并阐述了与之相关的定理和性质,包括数列的收敛和发散条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在所有收玫数列中,有一类重要的数列, 称为无穷小数列, 其定义如下.

定义 2

lim ⁡ n → ∞ a n = 0 \lim \limits_{n \rightarrow \infty} a_{n}=0 nliman=0, 则称 { a n } \left\{a_{n} \right\} { an}无穷小数列.

前面例 1 , 2 , 4 , 6 1,2,4,6 1,2,4,6 中的数列都是无穷小数列. 由无穷小数列的定义, 读者不难证明如下定理.

定理 2.1

数列 { a n ∣ \left\{a_{n} \mid\right. { an 收敛于 a a a 的充要条件是: { a n − a ∣ \left\{a_{n}-a \mid\right. { ana 为无穷小数列.

最后我们介绍一下无穷大数列的概念.

定义 3

若数列 { a n } \left\{a_{n}\right\}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值