数学分析(五)-导数和微分2-求导法则3-复合函数的导数1:引理【f在x₀可导的充要条件:在x₀的某邻域U(x₀)上,存在一个在x₀连续的函数H(x),使得f(x)-f(x₀)=H(x)(x-x₀)】

本文探讨了函数在某点可导的充要条件,即存在一个在该点连续的函数H(x),使得函数差值与自变量差值的比等于H(x)。进一步证明了这个条件与复合函数求导的关系,并指出该引理对于向量函数导数的推广意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了证明复合函数的求导公式,我们先证明一个引理.

引理

f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 可导的充要条件是: 在 x 0 x_{0} x0 的某邻域 U ( x 0 ) U\left(x_{0}\right) U(x0) 上, 存在一个在点 x 0 x_{0} x0连续的函数 H ( x ) H(x) H(x), 使得

f ( x ) − f ( x 0 ) = H ( x ) ( x − x 0 ) , f(x)-f\left(x_{0}\right)=H(x)\left(x-x_{0}\right), f(x)f(x0)=H(x)(xx0),

从而 f ′ ( x 0 ) = H ( x 0 ) f^{\prime}\left(x_{0}\right)=H\left(x_{0}\right) f(x0)=H(x0).


f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 可导, 令

H ( x ) = { f ( x ) − f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值