为了证明复合函数的求导公式,我们先证明一个引理.
引理
f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 可导的充要条件是: 在 x 0 x_{0} x0 的某邻域 U ( x 0 ) U\left(x_{0}\right) U(x0) 上, 存在一个在点 x 0 x_{0} x0连续的函数 H ( x ) H(x) H(x), 使得
f ( x ) − f ( x 0 ) = H ( x ) ( x − x 0 ) , f(x)-f\left(x_{0}\right)=H(x)\left(x-x_{0}\right), f(x)−f(x0)=H(x)(x−x0),
从而 f ′ ( x 0 ) = H ( x 0 ) f^{\prime}\left(x_{0}\right)=H\left(x_{0}\right) f′(x0)=H(x0).
证
设 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 可导, 令
H ( x ) = { f ( x ) − f