数学分析(十三)-函数列与函数项级数2-1-一致收敛函数列性质2:可积性【若{fₙ}在[a,b]上收敛且每项都连续,则:∫ₐᵇlim_{n⭢∞}fₙ(x)dx=lim_{n⭢∞}∫ₐᵇfₙ(x)dx】

定理13.10表明,如果函数列{fn}在[a,b]上一致收敛且每一项连续,那么极限函数的积分等于各函数项积分的极限。这允许在一致收敛条件下交换极限和积分操作。通过例子展示了即使不一致收敛,只要满足一定条件,定理依然成立。" 112158252,10295935,CSS弹性盒子布局详解与实战,"['前端开发', 'CSS', '布局']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 13.10 (可积性)

若函数列 { f n } \left\{f_{n}\right\} { fn} [ a , b ] [a, b] [a,b]上一致收敛, 且每一项都连续,则

∫ a b lim ⁡ n → ∞ f n ( x ) d x = lim ⁡ n → ∞ ∫ a b f n ( x ) d x .  ( 3 ) \int_{a}^{b} \lim \limits_{n \rightarrow \infty} f_{n}(x) \mathrm{d} x=\lim \limits_{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) \mathrm{d} x \text {. } \quad\quad (3) abnlimfn(x)dx=nlimabfn(x)dx(3)


f f f 为函数列 { f n } \left\{f_{n}\right\} { fn} [ a , b ] [a, b] [a,b] 上的极限函数. 由定理 13.9 , f 13.9, f 13.9,f [ a , b ] [a, b] [a,b] 上连续, 从而 f n ( n = 1 , 2 , ⋯   ) f_{n}(n=1,2, \cdots) fn(n=1,2,) f f f
[ a , b ] [a, b] [a,b] 上都可积.

因为在 [ a , b ] [a, b] [a,b] f n ⇉ f ( n → ∞ ) f_{n} ⇉ f(n \rightarrow \infty) fnf(n),故对任给正数 ε \varepsilon ε, 存在 N N N, 当 n > N n>N n>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值