定理 13.10 (可积性)
若函数列 { f n } \left\{f_{n}\right\} { fn} 在 [ a , b ] [a, b] [a,b]上一致收敛, 且每一项都连续,则
∫ a b lim n → ∞ f n ( x ) d x = lim n → ∞ ∫ a b f n ( x ) d x . ( 3 ) \int_{a}^{b} \lim \limits_{n \rightarrow \infty} f_{n}(x) \mathrm{d} x=\lim \limits_{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) \mathrm{d} x \text {. } \quad\quad (3) ∫abn→∞limfn(x)dx=n→∞lim∫abfn(x)dx. (3)
证
设 f f f 为函数列 { f n } \left\{f_{n}\right\} {
fn} 在 [ a , b ] [a, b] [a,b] 上的极限函数. 由定理 13.9 , f 13.9, f 13.9,f 在 [ a , b ] [a, b] [a,b] 上连续, 从而 f n ( n = 1 , 2 , ⋯ ) f_{n}(n=1,2, \cdots) fn(n=1,2,⋯) 与 f f f
在 [ a , b ] [a, b] [a,b] 上都可积.
因为在 [ a , b ] [a, b] [a,b] 上 f n ⇉ f ( n → ∞ ) f_{n} ⇉ f(n \rightarrow \infty) fn⇉f(n→∞),故对任给正数 ε \varepsilon ε, 存在 N N N, 当 n > N n>N n>