定义 1 (导数的定义)
设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某邻域内有定义, 若极限
lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 ( 3 ) \lim \limits_{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad\quad(3) x→x0limx−x0f(x)−f(x0)(3)
存在, 则称函数 f f f 在点 x 0 x_{0} x0 可导, 并称该极限为函数 f f f 在点 x 0 x_{0} x0的导数, 记作 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f′(x0).
令 x = x 0 &