数学分析(五)-导数和微分1-导数的概念1-2-根据“导数定义”来求函数f(x)在点x₀的导数1:f′=lim_{∆x→0}(∆y/∆x)=lim_{∆x→0}[f(x₀+∆x)-f(x₀)]/∆x

本文介绍了导数的定义,通过函数f(x)=x²在点x=1的求导过程,展示了如何根据导数定义求解导数,并给出了切线方程的计算方法。同时,举例说明常量函数的导数始终为零。
摘要由CSDN通过智能技术生成

定义 1 (导数的定义)

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某邻域内有定义, 若极限

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 ( 3 ) \lim \limits_{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad\quad(3) xx0limxx0f(x)f(x0)(3)

存在, 则称函数 f f f 在点 x 0 x_{0} x0 可导, 并称该极限为函数 f f f 在点 x 0 x_{0} x0的导数, 记作 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0).


x = x 0 &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值