数学分析(八)-不定积分3-1-有理函数的不定积分2:求有理函数的不定积分

本文介绍了如何求解有理函数的不定积分,特别是真分式的情况。通过部分分式分解,将问题转化为求解简单形式的不定积分。文章详细阐述了分解过程的三个步骤,并通过两个示例详细说明了如何应用这些步骤来找到待定系数并最终求得积分结果。涉及到的主要方法包括多项式的除法、部分分式分解以及递推公式求解不定积分。
摘要由CSDN通过智能技术生成

R ( x ) = P ( x ) Q ( x ) = α 0 x n + α 1 x n − 1 + ⋯ + α n β 0 x m + β 1 x m − 1 + ⋯ + β m , ( 1 ) R(x)=\cfrac{P(x)}{Q(x)}=\cfrac{\alpha_{0} x^{n}+\alpha_{1} x^{n-1}+\cdots+\alpha_{n}}{\beta_{0} x^{m}+\beta_{1} x^{m-1}+\cdots+\beta_{m}}, \quad\quad(1) R(x)=Q(x)P(x)=β0xm+β1xm1++βmα0xn+α1xn1++αn,(1)

其中 n , m n, m n,m 为非负整数, α 0 , α 1 , ⋯   , α n \alpha_{0}, \alpha_{1}, \cdots, \alpha_{n} α0,α1,,αn β 0 , β 1 , ⋯   , β m \beta_{0}, \beta_{1}, \cdots, \beta_{m} β0,β1,,βm 都是常数, 且 α 0 ≠ 0 , β 0 ≠ 0 \alpha_{0} \neq 0, \beta_{0} \neq 0 α0=0,β0=0.

  • m > m> m> n n n, 则称它为真分式;
  • m ⩽ n m \leqslant n mn, 则称它为假分式.

由多项式的除法可知, 假分式总能化为一个多项式与一个真分式之和.


由于多项式的不定积分是容易求得的, 因此只需研究真分式的不定积分, 故设 (1)为一有理真分式.

根据代数知识, 如果多项式 Q 1 ( x ) Q_{1}(x) Q1(x) Q 2 ( x ) Q_{2}(x) Q2(x) 是互素的, 即 ( Q 1 ( x ) , Q 2 ( x ) ) = 1 \left(Q_{1}(x), Q_{2}(x)\right)=1 (Q1(x),Q2(x))=1, 则存在多项式 P 1 ( x ) P_{1}(x) P1(x) P 2 ( x ) P_{2}(x) P2(x), 使得 P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) = 1 P_{1}(x) Q_{1}(x)+P_{2}(x) Q_{2}(x)=1 P1(x)Q1(x)+P2(x)Q2(x)=1. 于是

1 Q 1 ( x ) Q 2 ( x ) = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) Q 1 ( x ) Q 2 ( x ) = P 1 ( x ) Q 2 ( x ) + P 2 ( x ) Q 1 ( x ) \cfrac{1}{Q_{1}(x) Q_{2}(x)}=\cfrac{P_{1}(x) Q_{1}(x)+P_{2}(x) Q_{2}(x)}{Q_{1}(x) Q_{2}(x)}=\cfrac{P_{1}(x)}{Q_{2}(x)}+\cfrac{P_{2}(x)}{Q_{1}(x)} Q1(x)Q2(x)1=Q1(x)Q2(x)P1(x)Q1(x)+P2(x)Q2(x)=Q2(x)P1(x)+Q1(x)P2(x)

因此,有理真分式必定可以表示成若干个部分分式之和 (称为部分分式分解).

因而问题归结为求那些部分分式的不定积分. 为此,先把怎样分解部分分式的步骤简述如下 (可与后面的例 1 对照着做):

第一步

对分母 Q ( x ) Q(x) Q(x) 在实系数内作标准分解:
Q ( x ) = ( x − a 1 ) λ 1 ⋯ ( x − a 1 ) λ 3 ( x 2 + p 1 x + q 1 ) μ 1 ⋯ ( x 2 + p t x + q t ) μ 2 . ( 2 ) Q(x)=\left(x-a_{1}\right)^{\lambda_{1}} \cdots\left(x-a_{1}\right)^{\lambda_{3}}\left(x^{2}+p_{1} x+q_{1}\right)^{\mu_{1}} \cdots\left(x^{2}+p_{t} x+q_{t}\right)^{\mu_{2}} . \quad\quad(2) Q(x)=(xa1)λ1(xa1)λ3(x2+p1x+q1)μ1(x2+ptx+qt)μ2.(2)

其中 β 0 = 1 , λ i , μ j ( i = 1 , 2 , ⋯   , s ; j = 1 , 2 , ⋯   , t ) \beta_{0}=1, \lambda_{i}, \mu_{j}(i=1,2, \cdots, s ; j=1,2, \cdots, t) β0=1,λi,μj(i=1,2,,s;j=1,2,,t) 均为自然数, 而且

∑ i = 1 ∞ λ i + 2 ∑ j = 1 t μ j = m ; p j 2 − 4 q j < 0 , j = 1 , 2 , ⋯   , t . \sum_{i=1}^{\infty} \lambda_{i}+2 \sum_{j=1}^{t} \mu_{j}=m ; \quad p_{j}^{2}-4 q_{j}<0, j=1,2, \cdots, t . i=1λi+2j=1tμj=m;pj24qj<0,j=1,2,,t.

第二步

根据分母的各个因式分别写出与之相应的部分分式: 对于每个形如 ( x − a ) k (x-a)^{k} (xa)k 的因式, 它所对应的部分分式是

A 1 x − a + A 2 ( x − a ) 2 + ⋯ + A k ( x − a ) 2 ; \cfrac{A_{1}}{x-a}+\cfrac{A_{2}}{(x-a)^{2}}+\cdots+\cfrac{A_{k}}{(x-a)^{2}} ; xaA1+(xa)

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值