复变函数论5-1-解析函数的洛朗展式-4-解析函数在孤立奇点邻域内的洛朗展式3-洛朗级数展开方法2:间接展开法【据正负幂项组成的级数的惟一性,用代数运算/变量代换/已知的泰勒展式去求所需要的洛朗展式】

本文介绍了复变函数中解析函数在孤立奇点邻域内的洛朗级数展开,特别是间接展开法的应用。通过举例详细说明如何利用幂级数的唯一性和已知的泰勒展式求解洛朗展式,如求解 (z-1)(z-3)^2 和 zsinz 等函数的洛朗级数。
摘要由CSDN通过智能技术生成

如果 a a a 为函数 f ( z ) f(z) f(z) 的一个孤立奇点, 则必存在正数 R R R, 使得 f ( z ) f(z) f(z)在点 a a a 的去心邻域 K \ { a } : 0 < ∣ z − a ∣ < R K \backslash\{a\}: 0<|z-a|<R K\{ a}:0<za<R 内可展成洛朗级数.

常用展开方法:

间接展开法.

根据正、负幂项组成的级数的惟一性, 可用代数运算、变量代换,并利用已知的泰勒展式去求所需要的洛朗展式.优点: 简捷、快速.

例 5.2
求函数 f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 f(z)=\cfrac{1}{(z-1)(z-3)^{2}} f(z)=(z1)(z3)21 分别在(1) 0 < ∣ z − 1 ∣ < 2 0<|z-1|<2 0<z1∣<2; (2) 2 < ∣ z − 1 ∣ < 2<|z-1|< 2<z1∣< + ∞ +\infty + 内的洛朗展式.


(1) 当 0 < ∣ z − 1 ∣ < 2 0<|z-1|<2 0<z1∣<2 时, ∣ z − 1 2 ∣ < 1 \left|\cfrac{z-1}{2}\right|<1 2z1 <1, 故

1 z − 3 = − 1 2 1 1 − z − 1 2 = − 1 2 ∑ n = 0 ∞ ( z − 1 2 ) n = − ∑ n = 0 ∞ ( z − 1 ) n 2 n + 1 . \cfrac{1}{z-3}=-\cfrac{1}{2} \cfrac{1}{1-\cfrac{z-1}{2}}=-\cfrac{1}{2} \sum_{n=0}^{\infty}\left(\cfrac{z-1}{2}\right)^{n}=-\sum_{n=0}^{\infty} \cfrac{(z-1)^{n}}{2^{n+1}} . z31=2112z11=21n=0(2z1)n=n=02n+1(z1)n.

1 ( z − 3 ) 2 = − ( 1 z − 3 ) ′ = ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 , \cfrac{1}{(z-3)^{2}}=-\left(\cfrac{1}{z-3}\right)^{\prime}=\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}}, (z3)21=(z31)=n=12n+1n(z1)n1,

所以

f ( z ) = 1 ( z − 1 ) ( z − 3 ) 2 = 1 z − 1 ∑ n = 1 ∞ n ( z − 1 ) n − 1 2 n + 1 = ∑ n = 1 ∞ n ( z − 1 ) n − 2 2 n + 1 . \begin{aligned} f(z) & =\cfrac{1}{(z-1)(z-3)^{2}}=\cfrac{1}{z-1} \sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-1}}{2^{n+1}} \\ & =\sum_{n=1}^{\infty} \cfrac{n(z-1)^{n-2}}{2^{n+1}} . \end{aligned} f(z)=(z1)(z3)21=z11n=12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值