泛函分析基础7-2-赋范线性空间7-Lᵖ[a,b]空间2:Lᵖ[a,b]【[a,b]上p方可积函数全体记为Lᵖ[a,b]】

首先需要证明几个重要的不等式:赫尔德(Holder)不等式、

下面介绍两个重要的巴拿赫空间。


例4
空间 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b].

在这里插入图片描述

f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] 上复值可测函数, p > 0 p > 0 p>0,如果 ∣ f ( x ) ∣ p | f ( x ) | ^ { p } f(x)p [ a , b ] [ a , b ] [a,b] L L L 可积函数,则称 f ( t ) f ( t ) f(t) [ a , b ] [ a , b ] [a,b] p p p 方可积函数 [ a , b ] [ a , b ] [a,b] p p p方可积函数全体记为 L p [ a , b ] \color{red}{L ^ { p } [ a , b ]} Lp[a,b]

p = 1 p = 1 p=1 时, L 1 [ a , b ] L ^ { 1 } [ a , b ] L1[a,b] 即为 [ a , b ] [ a , b ] [a,b] L L L 可积函数全体.在空间 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中,我们把两个 a . e . a . e . a.e. 相等的函数视为 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中同一个元素而不加以区别.设 f , g ∈ L p [ a , b ] , f , g \in L ^ { p } [ a , b ] , f,gLp[a,b], 因为

∣ ⁢ f ⁡ ( t ) + g ⁡ ( t ) ∣ p ⩽ ( 2 max ⁡ { ∣ ⁢ f ⁡ ( t ) ⁢ ∣ , ∣ ⁢ g ⁡ ( t ) ⁢ ∣ } ) p ⩽ 2 p ( ∣ ⁢ f ⁡ ( t ) ∣ p + ∣ ⁢ g ⁡ ( t ) ∣ p ) . ∣⁢f⁡\left(t\right) + g⁡\left(t\right)∣^{p}⩽\left(2\max \left\{∣⁢f⁡\left(t\right)⁢∣,∣⁢g⁡\left(t\right)⁢∣\right\}\right)^{p}⩽2^{p}\left(∣⁢f⁡\left(t\right)∣^{p} + ∣⁢g⁡\left(t\right)∣^{p}\right). f(t)+g(t)p(2max{f(t),g(t)})p2p(f(t)p+g(t)p).

所以, ∣ f ( t ) + g ( t ) ∣ p | f ( t ) + g ( t ) | ^ { p } f(t)+g(t)p [ a , b ] [ a , b ] [a,b] L L L可积函数,即 f + g ∈ L p [ a , b ] . f + g \in L ^ { p } [ a , b ] . f+gLp[a,b]. 至于 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 关于数乘运算封闭是显见的.

L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]按函数通常的加法及数乘运算成为线性空间对每个 f ∈ L p [ a , b ] , f \in L ^ { p } [ a , b ] , fLp[a,b], 定义

∥ f ∥ p = ( ∫ a b ∣ f ( t ) ∣ p   d t ) 1 p . ( 6 ) \| f \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } .\quad\quad(6) fp=(abf(t)p dt)p1.(6)

我们要证明当 p ⩾ 1 p \geqslant 1 p1 时, L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成为巴拿赫空间.

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值