泛函分析基础7-2-赋范线性空间7-Lᵖ[a,b]空间4:Lᵖ[a,b](p⩾1)是巴拿赫空间

定理2

L p [ a , b ] ( p ⩾ 1 ) L ^ { p } [ a , b ] ( p \geqslant 1 ) Lp[a,b](p1) 是巴拿赫空间.

证明
{ f n } \left\{ f _ { n } \right\} {fn} L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中柯西点列,由柯西点列的定义,存在正整数 m k , m _ { k } , mk, 使当 n , n , n, m ⩾ m k m \geqslant m _ { k } mmk 时,

∥ f n − f m ∥ p < 1 2 k , k = 1 , 2 , ⋯ \left\| f _ { n } - f _ { m } \right\| _ { p } < \frac { 1 } { 2 ^ { k } } , k = 1 , 2 , \cdots fnfmp<2k1,k=1,2,

n k ⩾ m k , n _ { k } \geqslant m _ { k } , nkmk, 且使 n 1 < n 2 < ⋯ < n k < ⋯   , n _ { 1 } < n _ { 2 } < \cdots < n _ { k } < \cdots , n1<n2<<nk<,

∥ f n k + 1 − f n k ∥ p < 1 2 k , k = 1 , 2 , ⋯   . \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } < \frac { 1 } { 2 ^ { k } } , k = 1 , 2 , \cdots . fnk+1fnkp<2k1,k=1,2,.

因此

∑ k = 1 ∞ ∥ f n k + 1 − f n k ∥ p ⩽ ∑ k = 1 ∞ 1 2 k < ∞ . ( 12 ) \sum _ { k = 1 } ^ { \infty } \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } \leqslant \sum _ { k = 1 } ^ { \infty } \frac { 1 } { 2 ^ { k } } < \infty .\quad\quad(12) k=1fnk+1fnkpk=12k1<∞.(12)

但是因为常数 1 ∈ L ∗ [ a , b ] , 1 \in L ^ { * } [ a , b ] , 1L[a,b], 由赫尔德不等式,有

∫ a b ∣ f n k + 1 ( t ) − f n k ( t ) ∣ d t ⩽ ∥ f n k + 1 − f n k ∥ p ( b − a ) 1 q . \int _ { a } ^ { b } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| \mathrm { d } t \leqslant \left\| f _ { n _ { k + 1 } } - f _ { n _ { k } } \right\| _ { p } ( b - a ) ^ { \frac { 1 } { q } } . abfnk+1(t)fnk(t)dtfnk+1fnkp(ba)q1.

所以级数

∑ k = 1 ∞ ∫ a b ∣ f n k + 1 ( t ) − f n k ( t ) ∣ d t ( 13 ) \sum _ { k = 1 } ^ { \infty } \int _ { a } ^ { b } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| \mathrm { d } t \quad\quad(13) k=1abfnk+1(t)fnk(t)dt(13)

收敛,由级数形式的莱维定理,级数 ∑ k = 1 ∞ ∣ f n k + 1 ( t ) − f n k ( t ) ∣ \sum _ { k = 1 } ^ { \infty } \left| f _ { n _ { k + 1 } } ( t ) - f _ { n _ { k } } ( t ) \right| k=1fnk+1(t)fnk(t) [ a , b ] [ a , b ] [a,b] 上几乎处处收敛.因此,函数列

f n k ( t ) = f n 1 ( t ) + ∑ j = 1 k − 1 ( f n n + 1 ( t ) − f n j ( t ) ) ( k = 1 , 2 , 3 , ⋯   ) f _ { n _ { k } } ( t ) = f _ { n _ { 1 } } ( t ) + \sum _ { j = 1 } ^ { k - 1 } \left( f _ { n _ { n + 1 } } ( t ) - f _ { n _ { j } } ( t ) \right) ( k = 1 , 2 , 3 , \cdots ) fnk(t)=fn1(t)+j=1k1(fnn+1(t)fnj(t))(k=1,2,3,)

[ a , b ] [ a , b ] [a,b] 上几乎处处收敛于一可测函数 f ( t ) . f ( t ) . f(t). 下证 f ∈ L p [ a , b ] . f \in L ^ { p } [ a , b ] . fLp[a,b]. 因为 { f n } \left\{ f _ { n } \right\} {fn} L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 中柯西点列,对于任意正数 ε > 0 , \varepsilon > 0 , ε>0, 存在 N , N , N, 使当 n , m ⩾ N n , m \geqslant N n,mN 时, ∥ f n − f m ∥ p < ε , \left\| f _ { n } - f _ { m } \right\| _ { p } < \varepsilon , fnfmp<ε,
取足够大的 k 0 , k _ { 0 } , k0,使 n k 0 > N , n _ { k _ { 0 } } > N , nk0>N, 于是当 k ⩾ k 0 , n ⩾ N k \geqslant k _ { 0 } , n \geqslant N kk0,nN 时,就有

∫ a b ∣ f n ( t ) − f n k ( t ) ∣ p   d t = ∥ f n − f n k ∥ p p < ε p . \int _ { a } ^ { b } \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \mathrm { ~ d } t = \left\| f _ { n } - f _ { n _ { k } } \right\| p ^ { p } < \varepsilon ^ { p } . abfn(t)fnk(t)p dt=fnfnkpp<εp.

又因当 k → ∞ k \rightarrow \infty k 时函数列 ∣ f n ( t ) − f n k ( t ) ∣ p → ∣ f n ( t ) − f ( t ) ∣ p a . e . \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \rightarrow \left| f _ { n } ( t ) - f ( t ) \right| ^ { p } a . e . fn(t)fnk(t)pfn(t)f(t)pa.e. [ a , b ] , [ a , b ] , [a,b], 由法图定理得到 ∣ f n ( t ) − f ( t ) ∣ ′ \left| f _ { n } ( t ) - f ( t ) \right| ^ { \prime } fn(t)f(t) L L L可积函数,并且有

∫ a b ∣ f n ( t ) − f ( t ) ∣ p   d t ⩽ lim ⁡ ‾ k → ∞ ∫ a b ∣ f n ( t ) − f n k ( t ) ∣ p   d t ⩽ ε p , \int _ { a } ^ { b } \left| f _ { n } ( t ) - f ( t ) \right| ^ { p } \mathrm { ~ d } t \leqslant \underset{k \to\infty}{\underline{\operatorname* {l i m}}} \int _ { a } ^ { b } \left| f _ { n } ( t ) - f _ { n _ { k } } ( t ) \right| ^ { p } \mathrm { ~ d } t \leqslant \varepsilon ^ { p } , abfn(t)f(t)p dtklimabfn(t)fnk(t)p dtεp,

这说明 f − f n ∈ L p [ a , b ] , f - f _ { n } \in L ^ { p } [ a , b ] , ffnLp[a,b], 且当 n ⩾ N n \geqslant N nN

∥ f n − f ∥ p ⩽ ε . ( 14 ) \left\| f _ { n } - f \right\| _ { p } \leqslant \varepsilon .\quad\quad(14) fnfpε.(14)

又因 f n ∈ L p [ a , b ] , f _ { n } \in L ^ { p } [ a , b ] , fnLp[a,b], f = [ f − f n ] + f n , f = \left[ f - f _ { n } \right] + f _ { n } , f=[ffn]+fn, 由于 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b] 是线性空间,所以 f ∈ L p [ a , b ] , f \in L ^ { p } [ a , b ] , fLp[a,b], 由(14) , f n → f , f _ { n } \rightarrow f , fnf, 这就证明了 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]是巴拿赫空间.

C [ a , b ] C [ a , b ] C[a,b] 中每个函数 f ( t ) , f ( t ) , f(t), 定义

∥ f ∥ p = ( ∫ a b ∣ f ( t ) ∣ p   d t ) 1 p ( p ⩾ 1 ) , \| f \| _ { p } = \left( \int _ { a } ^ { b } | f ( t ) | ^ { p } \mathrm { ~ d } t \right) ^ { \frac { 1 } { p } } ( p \geqslant 1 ) , fp=(abf(t)p dt)p1(p1),

那么 C [ a , b ] C [ a , b ] C[a,b] ∥ ⋅ ∥ p \| \cdot \| _ { p } p 成为 L p [ a , b ] L ^ { p } [ a , b ] Lp[a,b]的赋范线性子空间,类似于 S \mathrm { S } S 4例5的证明,可以证明 C [ a , b ] C [ a , b ] C[a,b] 按范数 ∥ ⋅ ∥ p \| \cdot \| _ { p } p不完备,但是可以证明它的完备化空间是 L p [ a , b ] . L ^ { p } [ a , b ] . Lp[a,b]. 从这个观点看, L L L 可积函数类只不过是 R R R 可 积函数类的完备化拓广

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值