泛函分析基础7-1-度量空间4-2-6:完备度量空间-例04【令P[a,b]表示闭区间[a,b]上实系数多项式全体,则P[a,b]作为C[a,b]的子空间是不完备的度量空间】

柯西点列

X = ( X , d ) X = ( X , d ) X=(X,d) 是度量空间, { x n } \left\{ x _ { n } \right\} {xn} X X X中点列,如果对任意给定的正数 ε > 0 , \varepsilon > 0 , ε>0,存在正整数 N = N ( ε ) , N = N ( \varepsilon ) , N=N(ε), 使当 n , m > N n , m > N n,m>N 时,必有

d ( x n , x m ) < ε , d \left( x _ { n } , x _ { m } \right) < \varepsilon , d(xn,xm)<ε,

则称 { x n } \left\{ x _ { n } \right\} {xn} X X X中的柯西点列基本点列

如果度量空间 ( X , d ) ( X , d ) (X,d) 中每个柯西点列都在 ( X , d ) ( X , d ) (X,d) 中收敛,那么称 ( X , d ) ( X , d ) (X,d)完备的度量空间

注意:这里要求在 X X X 中存在一点,使该柯西点列收敛到这一点。


下面举几个不完备空间的例子.

例4
P [ a , b ] P [ a , b ] P[a,b] 表示闭区间 [ a , b ] [ a , b ] [a,b] 上实系数多项式全体,则 P [ a , b ] P [ a , b ] P[a,b] 作为 C [ a , b ] C [ a , b ] C[a,b]的子空间是不完备的度量空间.

事实上存在多项式列 P k , k = 1 , 2 , ⋯ P _ { k } , k = 1 , 2 , \cdots Pk,k=1,2, [ a , b ] [ a , b ] [a,b] 上一致地收敛于某个非多项式的连续函数,也就是说 P [ a , b ] P [ a , b ] P[a,b] 不是 C [ a , b ] C [ a , b ] C[a,b]的闭子空间,由上述定理知 P [ a , b ] P [ a , b ] P[a,b] 不是完备度量空间.

X X X 表示闭区间 [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续函数全体,对任意 x , y ∈ X , x , y \in X , x,yX,

d ( x , y ) = ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ d t , d ( x , y ) = \int _ { 0 } ^ { 1 } | x ( t ) - y ( t ) | \mathrm { d } t , d(x,y)=01x(t)y(t)dt,

那么 ( X , d ) ( X , d ) (X,d) 成 为度量空间.事实上,容易验证 d d d 满足第二章 S \mathrm { S } S 1 中关于距离的条件 2 ∘ . 2 ^ { \circ } . 2. 现验证 d d d 满足条件 1 ∘ . 1 ^ { \circ } . 1. 事实上, d d d 非负显然,如果 x ( t ) ≡ y ( t ) , t ∈ [ 0 , 1 ] , x ( t ) \equiv y ( t ) , t \in [ 0 , 1 ] , x(t)y(t),t[0,1], 则显然 $d ( x , y ) =$0,反之如果 d ( x , y ) = 0 , d ( x , y ) = 0 , d(x,y)=0, 因为 ∣ x ( t ) − y ( t ) ∣ ⩾ 0 , | x ( t ) - y ( t ) | \geqslant 0 , x(t)y(t)0, 所以 x ( t ) = y ( t ) a . e . x ( t ) = y ( t ) a . e . x(t)=y(t)a.e. [ 0 , 1 ] , [ 0 , 1 ] , [0,1], 但几乎处处相等的连续函数必然恒等(请读者自证),所以 x = y . x = y . x=y.

例5
上面定义的度量空间 ( X , d ) ( X , d ) (X,d) 不完备

证明
令(图7.1)

x m ( t ) = { 1 , 1 2 + 1 m ⩽ t ⩽ 1 , m ( x − 1 2 ) , 1 2 < t < 1 2 + 1 m , 0 , 0 ⩽ t ⩽ 1 2 . x _ { m } ( t ) = \left\{ \begin{array} { l l } 1 , & \frac { 1 } { 2 } + \frac { 1 } { m } \leqslant t \leqslant 1 , \\ m \left( x - \frac { 1 } { 2 } \right) , & \frac { 1 } { 2 } < t < \frac { 1 } { 2 } + \frac { 1 } { m } , \\ 0 , & 0 \leqslant t \leqslant \frac { 1 } { 2 } . \end{array} \right. xm(t)= 1,m(x21),0,21+m1t1,21<t<21+m1,0t21.

那么, { x i } \left\{ x _ { i } \right\} {xi} ( X , d ) ( X , d ) (X,d)中的柯西点列.事实上,对任何正数 ε > 0 , \varepsilon > 0 , ε>0, n > m > 1 ε n > m > \frac { 1 } { \varepsilon } n>m>ε1 时,

d ( x n , x m ) = ∫ 0 1 ∣ x n ( t ) − x m ( t ) ∣ d t = ∫ 1 2 1 2 + 1 m ∣ x n ( t ) − x m ( t ) ∣ d t ⩽ 1 m < ε , d \left( x _ { n } , x _ { m } \right) = \int _ { 0 } ^ { 1 } \left| x _ { n } ( t ) - x _ { m } ( t ) \right| \mathrm { d } t = \int _ { \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } + \frac { 1 } { m } } \left| x _ { n } ( t ) - x _ { m } ( t ) \right| \mathrm { d } t \leqslant \frac { 1 } { m } < \varepsilon , d(xn,xm)=01xn(t)xm(t)dt=2121+m1xn(t)xm(t)dtm1<ε,

但对每个 x ∈ X , x \in X , xX,

d ( x m , x ) = ∫ 0 1 ∣ x m ( t ) − x ( t ) ∣ d t = ∫ 0 1 2 ∣ ⁢ x ⁢ ( t ) ⁢ ∣ ⁢ d ⁢ t + ∫ 1 2 1 2 + 1 m ∣ x m ( t ) − x ⁢ ( t ) ⁢ ∣ ⁢ d ⁢ t + ∫ 1 2 + 1 m 1 ∣ 1 − x ⁢ ( t ) ⁢ ∣ ⁢ d ⁢ t . \begin{aligned} d \left( x _ { m } , x \right) &= \int _ { 0 } ^ { 1 } \left| x _ { m } ( t ) - x ( t ) \right| \mathrm { d } t\\ &= \int _{0}^{\frac{1}{2}}∣⁢x⁢\left(t\right)⁢∣⁢d⁢t + \int _{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{m}}\left|x_{m}\left(t\right)−x⁢\left(t\right)⁢∣⁢d⁢t + \int _{\frac{1}{2} + \frac{1}{m}}^{1}∣1−x⁢\left(t\right)⁢∣⁢d⁢t.\right. \end{aligned} d(xm,x)=01xm(t)x(t)dt=021x(t)dt+2121+m1 xm(t)x(t)dt+21+m111x(t)dt.

如果 d ( x m , x ) → 0 ( m → ∞ ) , d \left( x _ { m } , x \right) \rightarrow 0 ( m \rightarrow \infty ) , d(xm,x)0(m),必有

∫ 0 1 2 ∣ x ( t ) ∣ d t = 0 , ∫ 1 2 1 ∣ 1 − x ( t ) ∣ d t = 0 , \int _ { 0 } ^ { \frac { 1 } { 2 } } | x ( t ) | \mathrm { d } t = 0 , \int _ { \frac { 1 } { 2 } } ^ { 1 } | 1 - x ( t ) | \mathrm { d } t = 0 , 021x(t)dt=0,211∣1x(t)dt=0,

但由于 x ( t ) x ( t ) x(t) [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续,所以 x ( t ) x ( t ) x(t) [ 0 , 1 2 ] \left[ 0 , \frac { 1 } { 2 } \right] [0,21] 上恒为0,在 ( 1 2 , 1 ] \left( \frac { 1 } { 2 } , 1 \right] (21,1] 上恒为1,所以这与 x ( t ) x ( t ) x(t) [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续矛盾,因此 ( X , d ) ( X , d ) (X,d) 不完备, lim ⁡ t − 1 2 0 x ( t ) = 0 , lim ⁡ t → 1 2 − 0 x ( t ) = 1 , \lim _ { t - \frac { 1 } { 2 } 0 } x ( t ) = 0 , \lim _ { t \rightarrow \frac { 1 } { 2 } - 0 } x ( t ) = 1 , limt210x(t)=0,limt210x(t)=1,

在这里插入图片描述

基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.z
基于STM32智能循迹避障小车源码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值