柯西点列
设 X = ( X , d ) X = ( X , d ) X=(X,d) 是度量空间, { x n } \left\{ x _ { n } \right\} {xn} 是 X X X中点列,如果对任意给定的正数 ε > 0 , \varepsilon > 0 , ε>0,存在正整数 N = N ( ε ) , N = N ( \varepsilon ) , N=N(ε), 使当 n , m > N n , m > N n,m>N 时,必有
d ( x n , x m ) < ε , d \left( x _ { n } , x _ { m } \right) < \varepsilon , d(xn,xm)<ε,
则称 { x n } \left\{ x _ { n } \right\} {xn} 是 X X X中的柯西点列或基本点列。
如果度量空间 ( X , d ) ( X , d ) (X,d) 中每个柯西点列都在 ( X , d ) ( X , d ) (X,d) 中收敛,那么称 ( X , d ) ( X , d ) (X,d) 是完备的度量空间。
注意:这里要求在 X X X 中存在一点,使该柯西点列收敛到这一点。
下面举几个不完备空间的例子.
例4
令
P
[
a
,
b
]
P [ a , b ]
P[a,b] 表示闭区间
[
a
,
b
]
[ a , b ]
[a,b] 上实系数多项式全体,则
P
[
a
,
b
]
P [ a , b ]
P[a,b] 作为
C
[
a
,
b
]
C [ a , b ]
C[a,b]的子空间是不完备的度量空间.
事实上存在多项式列 P k , k = 1 , 2 , ⋯ P _ { k } , k = 1 , 2 , \cdots Pk,k=1,2,⋯ 在 [ a , b ] [ a , b ] [a,b] 上一致地收敛于某个非多项式的连续函数,也就是说 P [ a , b ] P [ a , b ] P[a,b] 不是 C [ a , b ] C [ a , b ] C[a,b]的闭子空间,由上述定理知 P [ a , b ] P [ a , b ] P[a,b] 不是完备度量空间.
设 X X X 表示闭区间 [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续函数全体,对任意 x , y ∈ X , x , y \in X , x,y∈X, 令
d ( x , y ) = ∫ 0 1 ∣ x ( t ) − y ( t ) ∣ d t , d ( x , y ) = \int _ { 0 } ^ { 1 } | x ( t ) - y ( t ) | \mathrm { d } t , d(x,y)=∫01∣x(t)−y(t)∣dt,
那么 ( X , d ) ( X , d ) (X,d) 成 为度量空间.事实上,容易验证 d d d 满足第二章 S \mathrm { S } S 1 中关于距离的条件 2 ∘ . 2 ^ { \circ } . 2∘. 现验证 d d d 满足条件 1 ∘ . 1 ^ { \circ } . 1∘. 事实上, d d d 非负显然,如果 x ( t ) ≡ y ( t ) , t ∈ [ 0 , 1 ] , x ( t ) \equiv y ( t ) , t \in [ 0 , 1 ] , x(t)≡y(t),t∈[0,1], 则显然 $d ( x , y ) =$0,反之如果 d ( x , y ) = 0 , d ( x , y ) = 0 , d(x,y)=0, 因为 ∣ x ( t ) − y ( t ) ∣ ⩾ 0 , | x ( t ) - y ( t ) | \geqslant 0 , ∣x(t)−y(t)∣⩾0, 所以 x ( t ) = y ( t ) a . e . x ( t ) = y ( t ) a . e . x(t)=y(t)a.e.于 [ 0 , 1 ] , [ 0 , 1 ] , [0,1], 但几乎处处相等的连续函数必然恒等(请读者自证),所以 x = y . x = y . x=y.
例5
上面定义的度量空间
(
X
,
d
)
( X , d )
(X,d) 不完备
证明
令(图7.1)
x m ( t ) = { 1 , 1 2 + 1 m ⩽ t ⩽ 1 , m ( x − 1 2 ) , 1 2 < t < 1 2 + 1 m , 0 , 0 ⩽ t ⩽ 1 2 . x _ { m } ( t ) = \left\{ \begin{array} { l l } 1 , & \frac { 1 } { 2 } + \frac { 1 } { m } \leqslant t \leqslant 1 , \\ m \left( x - \frac { 1 } { 2 } \right) , & \frac { 1 } { 2 } < t < \frac { 1 } { 2 } + \frac { 1 } { m } , \\ 0 , & 0 \leqslant t \leqslant \frac { 1 } { 2 } . \end{array} \right. xm(t)=⎩ ⎨ ⎧1,m(x−21),0,21+m1⩽t⩽1,21<t<21+m1,0⩽t⩽21.
那么, { x i } \left\{ x _ { i } \right\} {xi} 是 ( X , d ) ( X , d ) (X,d)中的柯西点列.事实上,对任何正数 ε > 0 , \varepsilon > 0 , ε>0, 当 n > m > 1 ε n > m > \frac { 1 } { \varepsilon } n>m>ε1 时,
d ( x n , x m ) = ∫ 0 1 ∣ x n ( t ) − x m ( t ) ∣ d t = ∫ 1 2 1 2 + 1 m ∣ x n ( t ) − x m ( t ) ∣ d t ⩽ 1 m < ε , d \left( x _ { n } , x _ { m } \right) = \int _ { 0 } ^ { 1 } \left| x _ { n } ( t ) - x _ { m } ( t ) \right| \mathrm { d } t = \int _ { \frac { 1 } { 2 } } ^ { \frac { 1 } { 2 } + \frac { 1 } { m } } \left| x _ { n } ( t ) - x _ { m } ( t ) \right| \mathrm { d } t \leqslant \frac { 1 } { m } < \varepsilon , d(xn,xm)=∫01∣xn(t)−xm(t)∣dt=∫2121+m1∣xn(t)−xm(t)∣dt⩽m1<ε,
但对每个 x ∈ X , x \in X , x∈X,
d ( x m , x ) = ∫ 0 1 ∣ x m ( t ) − x ( t ) ∣ d t = ∫ 0 1 2 ∣ x ( t ) ∣ d t + ∫ 1 2 1 2 + 1 m ∣ x m ( t ) − x ( t ) ∣ d t + ∫ 1 2 + 1 m 1 ∣ 1 − x ( t ) ∣ d t . \begin{aligned} d \left( x _ { m } , x \right) &= \int _ { 0 } ^ { 1 } \left| x _ { m } ( t ) - x ( t ) \right| \mathrm { d } t\\ &= \int _{0}^{\frac{1}{2}}∣x\left(t\right)∣dt + \int _{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{m}}\left|x_{m}\left(t\right)−x\left(t\right)∣dt + \int _{\frac{1}{2} + \frac{1}{m}}^{1}∣1−x\left(t\right)∣dt.\right. \end{aligned} d(xm,x)=∫01∣xm(t)−x(t)∣dt=∫021∣x(t)∣dt+∫2121+m1 xm(t)−x(t)∣dt+∫21+m11∣1−x(t)∣dt.
如果 d ( x m , x ) → 0 ( m → ∞ ) , d \left( x _ { m } , x \right) \rightarrow 0 ( m \rightarrow \infty ) , d(xm,x)→0(m→∞),必有
∫ 0 1 2 ∣ x ( t ) ∣ d t = 0 , ∫ 1 2 1 ∣ 1 − x ( t ) ∣ d t = 0 , \int _ { 0 } ^ { \frac { 1 } { 2 } } | x ( t ) | \mathrm { d } t = 0 , \int _ { \frac { 1 } { 2 } } ^ { 1 } | 1 - x ( t ) | \mathrm { d } t = 0 , ∫021∣x(t)∣dt=0,∫211∣1−x(t)∣dt=0,
但由于 x ( t ) x ( t ) x(t) 在 [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续,所以 x ( t ) x ( t ) x(t) 在 [ 0 , 1 2 ] \left[ 0 , \frac { 1 } { 2 } \right] [0,21] 上恒为0,在 ( 1 2 , 1 ] \left( \frac { 1 } { 2 } , 1 \right] (21,1] 上恒为1,所以这与 x ( t ) x ( t ) x(t) 在 [ 0 , 1 ] [ 0 , 1 ] [0,1] 上连续矛盾,因此 ( X , d ) ( X , d ) (X,d) 不完备, lim t − 1 2 0 x ( t ) = 0 , lim t → 1 2 − 0 x ( t ) = 1 , \lim _ { t - \frac { 1 } { 2 } 0 } x ( t ) = 0 , \lim _ { t \rightarrow \frac { 1 } { 2 } - 0 } x ( t ) = 1 , limt−210x(t)=0,limt→21−0x(t)=1,