Moravec 角点检测算法
这是最早的角点检测算法之一,并且(文章中)定义了角点(的概念)是一个低自相似性的点。该算法测试图像中的每个像素,通过比较像素的中心团块与它的邻近团块(主要是与中心团块有重叠的团块)之间的相似程度来判断是否存在一个角点。相似程度测量的方法是计算两个团块(中心团块与它的邻近团块)之间差的平方和。值越低(两个团块)越相似。
如果像素是在一个灰度均匀的区域,那么它邻近的团块(与中心团块)看起来是相似的。如果像素在边缘上,那么它在一个垂直于边缘的方向上的邻近团块(与中心团块)会看起来不一样,而在平行于边缘方向上的邻近团块(看起来)(与中心团块)之间变化很小。如果像素在一个在各个方向都变化的特征上,那么它邻近的每个团块(与中心团块)都不一样。
角点强度被定义为(每个像素的)中心团块与邻近团块之间(水平、垂直、对角线方向)的最小SSD(SSD是差平方之和),如果这个(像素的角点强度)数值为局部最大,则(认为)存在一个兴趣特征点。
Moravec指出,这个算子的主要问题(或叫不足)之一是它不是各向同性的,如果存在不是邻近方向(就是45度的方向)的边缘,那么最小SSD会变大并且边缘会错误的被认为是兴趣点。
Harris & Stephens / Plessey / Shi–Tomasi角点检测算法
Harris 和 Stephens改进了Moravec的角点检测方法,通过直接考虑关于方向的角点得分的差异来替代使用平移团块(角点得分通常被称为自相关,因为这个术语在这篇检测算子的文章中被用到。然而,在这篇文章中用到的数学说明使用了差平方之和)
为了不失一般性,我们将假设使用了2维灰度图。把I定义为图像。把图像团块区域定义为(u,v)并且按(x,y)移动团块。把中心团块与邻近团块之间差的平方的加权和定义为S,公式如下:
注:由于CSDN对公式和图片的不友好显示与相容,现将翻译的文档存放至百度文库,想了解Harris算法以及角点检测算法的请在百度文库下载(免费),链接如下
http://wenku.baidu.com/view/7698f636284ac850ad0242f2