自动驾驶软件工程之全局规划

自动驾驶技术作为现代交通领域的革新力量,其软件工程中的全局规划环节扮演着至关重要的角色。本博客将深入剖析自动驾驶全局规划的核心原理与实现方法,包括道路网络建模、路径搜索算法、决策制定策略等关键内容。通过全面阐述全局规划在自动驾驶中的作用,以及探讨其面临的挑战与未来发展趋势,本文旨在为自动驾驶软件工程的研发提供有益的参考和思路,推动自动驾驶技术的进一步发展与应用。

全局路径规划算法属于静态规划算法,根据已有的地图信息(SLAM)为基础进行路径规划,寻找一条从起点到目标点的最优路径。通常全局路径规划的实现包括Dijikstra算法,A*算法,RRT算法等经典算法,也包括蚁群算法、遗传算法等智能算法; 

1. Dijkstra算法和A*算法

图片

图片

图片

图片

图片

图片

图片

图片

图片

 规划主要分为全局规划、局部规划和行为规划 

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

Dijkstra算法是由计算机科学家Edsger W. Dijkstra在1956年提出,用来寻找图形中节点之间的最短路径。在Dijkstra算法中,需要计算每一个节点距离起点的总移动代价。同时,还需要一个优先队列结构。对于所有待遍历的节点,放入优先队列中会按照代价进行排序。在算法运行的过程中,每次都从优先队列中选出代价最小的作为下一个遍历的节点。直到到达终点为止。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

A*算法,A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。 

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

2. 行为规划和轨迹规划

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

参考文献

自动驾驶软件工程课程系列6:全局规划

A*算法详解一看就懂(python)_在键盘上弹钢琴的菜菜的博客-CSDN博客_a*算法

自动驾驶规划模块(Planning)_Sean Wong的博客-CSDN博客_planning 自动驾驶

无人驾驶路径规划(一)全局路径规划 - RRT算法原理及实现_FlyingKonan的博客-CSDN博客_全局路径规划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值