纯6轴imu姿态解算

文章探讨了卡尔曼滤波在IMU姿态解算中的应用,提到了物理减震和数字滤波器的重要性。对比了MPU6050的卡尔曼滤波与DMP解算的精度。此外,还介绍了基于EKF的库如ardupilot、px4固件以及内参标定和Mahony算法的原理和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要看卡尔曼滤波的imu姿态解算

比较符合需求的博客:

关于ardupilot、px4固件ekf的错误与tslam-v12-tekf对它的改进 - 知乎

比较简单满足需求:

 https://github.com/rsasaki0109/imu_estimator

GitHub - kekeliu-whu/imu_pose_estimator: IMU pose estimator implemented by EKF, ESKF and CF.

稍复杂但肯定能满足需求:

GitHub - PX4/PX4-ECL: Estimation & Control Library for Guidance, Navigation and Control Applications Using the ECL EKF | PX4 User Guide

https://github.com/ArduPilot/ardupilot/tree/master/libraries

2023.4.26

若觉得解算后效果不佳,一般不是解算算法引起的。首先应尝试物理减震方式去掉高频噪声,再使用数字滤波器进行滤波。如果你选择卡尔曼的话,在原始数据进卡尔曼预测函数之前,对加速度计 陀螺仪 都使用 fir或iir低通滤波器 滤一次。如果选择互补滤波,陀螺仪最好用带通滤波器。

MPU6050欧拉角卡尔曼滤波解算和DMP解算哪个方式数据更加精准? - 知乎

附录:

9轴imu姿态解算:

内参标定:

Project_rikirobot/src/rikirobot_project/imu_calib at master · Taospirit/Project_rikirobot · GitHub

方差和随机游走:imu_utils

2023.5.22更新:

以上内容都是基于EKF来做的,之前有mahony姿态结算,看到这篇解说的很通透,从而有些启发

IMU姿态滤波算法——Mahony算法:原理与代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值