θ(s)=11+e−s
- 值域 (0,1)
- 常作为神经元(neuron)内部所代表的激励函数(activation)存在;
- 但对于 BP 神经网络而言,sigmoid 函数用作激励函数要尤其慎重;
1. 基本性质
(1)通分
θ(x)=es1+es(2)”对称”
1−θ(s)=θ(−s)(3)导数
θ′(s)=θ(s)(1−θ(s))sigmoid 函数的导数也是小于 1 的,不仅小于 1,θ′(s)=θ(s)(1−θ(s))<θ(s)
2. 简单变形(variant)
- θs1+θs,分子分母同时乘以 θs;
Sigmoid函数详解
本文详细介绍了Sigmoid函数的基本性质及简单变形,包括其通分形式、对称特性、导数特性及其值域特点,该函数在神经网络中常用作激活函数。
1255

被折叠的 条评论
为什么被折叠?



