分类型变量(Categorical variables)和数值型变量(Numerical variables)

下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文5426字)。

3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客

一、数据的基本概念

1、变量和对象

2、变量的类型

在数据科学和统计学中,变量是研究对象的基本要素。根据变量的性质和特点,可以将其分为两大类:分类型变量(Categorical variables)和数值型变量(Numerical variables)。这两类变量在数据分析和处理时有着不同的应用和方法。

分类型变量(Categorical Variables)

分类型变量,又称定性变量(Qualitative variables),是指通过定性方法确定的,用于描述观察单位某项属性特征或类别的指标。根据分类项数和类别之间是否存在顺序关系,分类型变量可以进一步分为有序分类变量(Ordinal categorical variables)和无序分类变量(Unordered categorical variables)。

有序分类变量(Ordinal Categorical Variables)

有序分类变量是指各类别之间存在程度上的差别,类别之间具有一定的顺序。例如:

  • 尿糖化验结果:(-、±、+、++、+++)
  • 疗效:治愈、显效、好转、无效

在这些例子中,每个类别不仅描述了不同的状态,还暗示了这些状态之间的顺序或等级关系。

无序分类变量(Unordered Categorical Variables)

无序分类变量是指各类别或属性之间无程度和顺序的差别。例如:

  • 性别:男、女
  • 药物反应:阴性、阳性
  • 血型:O、A、B、AB

这些变量的各类别之间没有顺序关系,每个类别只是不同的分类,不存在高低或优劣之分。

数值型变量(Numerical Variables)

数值型变量,又称定量变量(Quantitative variables),是指通过定量方法测定的,具有数值大小(高低或多少)的指标。根据其取值的连续性,数值型变量可以分为连续型变量(Continuous variables)和离散型变量(Discrete variables)。

连续型变量(Continuous Variables)

连续型变量是在一定区间内可以任意取值并且可以取无限多个数值的变量。例如:

  • 身高(Height)
  • 体重(Weight)
  • 血压(Blood pressure)

这些变量在其取值范围内是连续的,可以是任何实数值。

离散型变量(Discrete Variables)

离散型变量是通过计数方式取得的变量,取值为有限个或可数的离散数值。例如:

  • 脉搏(Pulse rate)
  • 白细胞计数(White blood cell count)

这些变量的取值通常是整数,表示具体的计数结果。

类型子类型示例描述
分类型变量有序分类变量尿糖化验结果(-、±、+、++、+++);疗效(治愈、显效、好转、无效)各类别之间存在顺序关系
无序分类变量性别(男、女);药物反应(阴性、阳性);血型(O、A、B、AB)各类别之间无顺序关系
数值型变量连续型变量身高、体重、血压变量在一定区间内可以取任意值
离散型变量脉搏、白细胞计数变量取值为有限个或可数的离散数值

二、R的数据结构

1、向量(Vector)

~~~~~~~~~~

随着数据科学行业的迅速发展,工具的种类和使用方法层出不穷,传统的纸质R语言教材由于篇幅限制和出版审核的繁琐程序,难以及时涵盖最新的技术动态和复杂应用场景。此外,市面上虽有不少R语言免费视频,但大多仅面向初学者,缺乏对如医药等复杂领域的深入探讨。为了解决这些问题,我们在CSDN论坛推出了《用R 探索医药数据科学》专栏。这一专栏将持续更新,不仅是一份教材,更是你掌握最新、最全医药数据科学的得力助手。我们为你精心整理了领域内的深度资料,提供专业且实战导向的内容,帮助你高效提升研究能力,加快医药数据科学领域科研成果的产出。

  • 《用R 探索医药数据科学》专栏会持续更新。
  •  每篇文章篇幅在5000字 至9000字之间。
  • 专栏已更新超过 110篇文章,超60万字。
  • 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。

https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

《用R探索医药数据科学》目录

(鉴于专栏处于持续更新状态,请自行查阅最新文章)

第一章:认识数据科学和R

1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客

1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客

1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客

1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客

第二章:R的安装和数据读取

2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客

2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客

2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客

2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客

2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客

2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客

2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客

2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客

2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客

2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客

第三章:认识数据

3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客

3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客

3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客

3章4节:R的逻辑运算和矩阵运算-CSDN博客

3章5节:R 语言的循环与遍历函数全解析-CSDN博客

第四章:数据的预处理

4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客

4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客

4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客

4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客

4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客

4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客

4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客

4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客

4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客

4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客

4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客

4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客

4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客

4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客

4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客

4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客

第五章:定量数据的统计描述

5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客

5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客

5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客

5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客

5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客

5章6节:R语言中的t检验,独立样本的t检验-CSDN博客

5章7节:单样本t检验和配对t检验-CSDN博客

5章8节:方差分析(ANOVA)及其应用-CSDN博客

5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客

第六章:定性数据的统计描述 

6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客

6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客

6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客

6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客

6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客

6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客

第七章:R的传统绘图

7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客

7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客

7章3节:R基础绘图之条形图和堆积条形图-CSDN博客

7章4节:饼图,箱线图和克利夫兰点图-CSDN博客

7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客

7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客

 第八章:R的进阶绘图

8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客

8章2节:ggplot2绘图之原理逻辑分解,掌握绘图步骤(更新20241104)-CSDN博客

8章3节:ggplot2绘图之内置主题设置全解析(更新20241104)-CSDN博客

8章4节:ggplot2绘图之几何体解析(一),参考线和基准线与分布图和频数图(更新20241104)-CSDN博客

8章5节:ggplot2绘图之几何体解析(二),关系图和时间序列图与误差条和高级图形平滑曲线(更新20241104)-CSDN博客

8章6节:坐标轴须图和带状图(更新20241107)_维恩图 约翰·维恩-CSDN博客

8章7节:平行坐标图和小提琴图_r语言parallelplot绘制平行坐标图-CSDN博客

8章8节:雷达图和RadViz图-CSDN博客

8章9节:词云图和树图(更新20241106)_echarts 可以生成词云图吗-CSDN博客

8章10节:维恩图和UpSet图_ae做柱状图动态图-CSDN博客

8章11节:R的地理图绘制(更新20241104)-CSDN博客

8章12节:三维图,由三维散点图起步,引入回归模型平面,到复杂坐标和渐变色的三维曲面图(更新20241107)-CSDN博客

第九章:临床试验的统计 

9章1节:初步认识临床试验(约7500字)-CSDN博客

9章2节:样本量估计的初步介绍-CSDN博客

9章3节:用R进行样本量估计的统计学参数-CSDN博客

9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客

9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客

9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客

9章7节:与总体均数比较的样本量估计和可视化-CSDN博客

9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客

9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客

9章10节:用R实现分层随机化-CSDN博客

9章11节:用R实现区组随机化和置换区组随机化-CSDN博客

9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客

第十章:Meta分析攻略

10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客

​​10章2节:Meta分析的7大步骤的扼要解读-CSDN博客

10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客

10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客

10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客

10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客

10章7节:用R进行单个率Meta分析-CSDN博客

10章8节:用R进行网状Meta分析细解-CSDN博客

第十一章:主成分分析

11章1节:深度讲解用R进行主成分分析(上)-CSDN博客

11章2节:​深度讲解用R进行主成分分析(中)-CSDN博客

11章3节:​深度讲解用R进行主成分分析(下)-CSDN博客

11章4节:学会用R进行因子分析(上)-CSDN博客  

11章5节:学会用R进行因子分析(中)-CSDN博客

11章6节:学会用R进行因子分析(下)-CSDN博客

第十二章:常见类型回归分析

12章1节:认识回归分析的历史背景及应用-CSDN博客

12章2节:构建一元和多元的线性回归模型-CSDN博客

12章3节:回归模型中哑变量的应用和设置-CSDN博客

12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客

12章5节:深度剖析回归模型结果的相关函数-CSDN博客

12章6节:深度解读线性回归模型的绘图判断-CSDN博客

12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客

12章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客

12章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客

12章10节:条件Logistic回归模型的分析-CSDN博客

第十三章:生存分析模型

13章1节:生存分析的基本概念和主要内容-CSDN博客

13章2节:用R进行生存率的描述与估计-CSDN博客

13章3节:生存分析的假设检验及可视化展示-CSDN博客

13章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客

13章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客

第十四章:匹配技术应用

14章1节:认识临床研究的匹配技术-CSDN博客

14章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客

第十五章:判别和聚类分析

15章1节:医学研究中的判别分析和聚类分析-CSDN博客

15章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客

15章3节:二次判别分析技术的运用-CSDN博客

15章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客

15章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客

15章6节:凝聚层次聚类和分裂层次聚类-CSDN博客

第十六章:机器学习入门 

16章1节:机器学习和人工智能的基础知识-CSDN博客

16章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客

16章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客

16章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客

16章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客

16章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客

16章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客

16章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客

16章9节:认识决策树,构建CART算法的决策树模型-CSDN博客

16章10节:深度解析如何构建随机森林算法预测模型-CSDN博客

16章11节:构建人工神经网络反向传播算法预测模型-CSDN博客

<think>嗯,用户问的是虚拟变量属于定性变量还是数值型变量。首先,我需要回顾一下虚拟变量的定义作用。虚拟变量,也叫哑变量,通常用来将分类变量转换为数值形式,便于在回归模中使用。比如性别可以用01表示男女。 根据引用中的资料,数值型变量分为连续离散,而分类变量属于定性变量。虚拟变量虽然用01这样的数值表示,但它们代表的其实是类别,比如性别中的不同类别,并没有实际的数值意义。所以虚拟变量应该属于定性变量中的分类变量。 不过用户可能会混淆,因为虚拟变量看起来是数值。需要解释清楚,数值形式只是为了统计分析的方便,本质还是类别。另外,用户可能在数据分析中遇到如何处理分类变量的问题,所以补充应用场景会有帮助。要确保回答结构清晰,分点说明,并引用合适的资料作为支持。</think>### 虚拟变量的类归属分析 #### 1. **虚拟变量的定义与作用** 虚拟变量(Dummy Variable)是一种用于将**分类变量Categorical Variables)**转换为数值形式的工具。例如,性别(男/女)可以用$0$$1$表示。尽管虚拟变量表现为数值(如$0,1$),但其本质是对分类信息的编码,属于**人为构造的数值型符号**,而非自然存在的数值型变量[^3][^4]。 #### 2. **虚拟变量变量的对应关系** 根据变量分类标准: - **定性变量(Qualitative Variables)**:包括分类变量(如性别、职业)顺序变量(如教育程度等级)。 - **数值型变量(Quantitative Variables)**:包括连续(如身高、体重)离散(如家庭人口数)。 **虚拟变量是定性变量分类变量)的数值化表达形式**。例如: - 将“季节”分为春、夏、秋、冬,构造3个虚拟变量(若以冬季为基准): $$D_1 = \begin{cases}1 & \text{春季}\\0 & \text{其他}\end{cases}, \quad D_2 = \begin{cases}1 & \text{夏季}\\0 & \text{其他}\end{cases}, \quad D_3 = \begin{cases}1 & \text{秋季}\\0 & \text{其他}\end{cases}$$ 虽然$D_1, D_2, D_3$取值为$0$或$1$,但仅代表类别属性,不具数值意义[^1]。 #### 3. **关键区别:数值意义** - **数值型变量**:具有可量化、可运算的数值含义(如收入$5000$元与$6000$元的差值有意义)。 - **虚拟变量**:数值仅代表类别归属,运算无实际意义(如性别编码$0+1=1$不代表实际含义)[^1][^4]。 #### 4. **数据分析中的应用** 在回归模中,虚拟变量用于将分类变量引入模。例如,研究教育程度对收入的影响时: - 将“学历”分为高中、本科、硕士,构造虚拟变量: $$Y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \epsilon$$ 其中$D_1=1$表示本科,$D_2=1$表示硕士(以高中为基准)[^2][^4]。 --- ### 总结 虚拟变量是**定性变量分类变量)的数值化表达形式**,其数值仅用于区分类别,不具备实际数学运算意义。因此,**虚拟变量属于定性变量**,而非数值型变量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值