学习IMU预积分(1)李群

本文介绍了IMU预积分的学习背景,主要聚焦于李群和李代数的基础概念。文章阐述了群的基本性质,如封闭性、结合律、幺元和逆元素,并通过旋转矩阵与矩阵乘法、整数与算术加法举例说明。接着,讨论了李群,特别是SLAM中常见的SO(3)和SE(3),它们分别表示三维空间中的旋转和刚体运动。下一部分将探讨李代数。
摘要由CSDN通过智能技术生成

背景:目前开始学习IMU的预积分与Christian Forster 与其组员的论文:IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation。

 

这文章涉及到基础知识李群与李代数,此文章先铺垫一下基础知识,大部分东西都从《视觉SLAM十四讲》搬运过来。

 

1.什么是群

在普通的算术中,常数a,b 相乘,相加,相减, 运算结果仍拥有同样属性,即常数。但是有一些群体它们只有一种运算使得结果仍然保有同样属性。例如,旋转矩阵相加的结果不拥有旋转矩阵的属性,即正交性,但旋转矩阵相乘可以得到另一个旋转矩阵。

为了方便,我们把一些群体与一种运算给绑定在一起,并且称之为群。

所以,群=一个集合+一个运算。用数学去描述的话,我们可以这样描述:G = (A, * )G = ( A, * )。当然这里的星号不一定指的是乘号,也可以是任意一种运算。

除此之外,一个群的运算必须满足以下性质:

1. 封闭性:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值