【智能算法】球形搜索算法(SSO)原理及实现

在这里插入图片描述


1.背景

2020年,J Zhao等人受到超立方体搜索方式启发,提出了球形搜索算法(Spherical Search Optimizer, SSO)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

SSO源于超立方体搜索方式,A和B表示两个个体,两条蓝线(OA和OB)是两个向量。个体A可以以A为圆心在球空间中搜索,而|AB|的长度就是球的半径。如果改变角度和半径,向量AB可以在整个球体内搜索。

在这里插入图片描述

2.2算法过程

球形搜索算子可以表述为:
A i n e w = F ⋅ ∣ ∣ A p − B p ∣ ∣ 2 . C o s ( θ ) A j n e w = F ⋅ ∣ ∣ A p − B p ∣ ∣ 2 ⋅ S i n ( θ ) ⋅ S i n ( ω ) A k n e w = F ⋅ ∣ ∣ A p − B p ∣ ∣ 2 ⋅ S i n ( θ ) ⋅ C o s ( ω ) A i n e w = F ⋅ ∣ ∣ A p − B p ∣ ∣ 2 . S i n ( θ ) (1) \begin{aligned} &A_{i}^{\mathrm{new}} =F\cdot||A_{p}-B_{p}||_{2}.\mathrm{Cos}(\theta) \\ &A_{j}^{\mathrm{new}} =F\cdot||A_{p}-B_{p}||_{2}\cdot\mathrm{Sin}(\theta)\cdot\mathrm{Sin}(\omega) \\ &A_{k}^{\mathrm{new}} =F\cdot||A_{p}-B_{p}||_{2}\cdot\mathrm{Sin}(\theta)\cdot\mathrm{Cos}(\omega) \\ &A_{i}^{\mathrm{new}} =F\cdot||A_{p}-B_{p}||_{2}.\mathrm{Sin}(\theta) \end{aligned}\tag{1} Ainew=F∣∣ApBp2.Cos(θ)Ajnew=F∣∣ApBp2Sin(θ)Sin(ω)Aknew=F∣∣ApBp2Sin(θ)Cos(ω)Ainew=F∣∣ApBp2.Sin(θ)(1)

在这里插入图片描述
伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试SSO性能 一键run.m

CEC2017-F11

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Zhao J, Tang D, Liu Z, et al. Spherical search optimizer: a simple yet efficient meta-heuristic approach[J]. Neural Computing and Applications, 2020, 32: 9777-9808.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值