defweight_dequant(x: torch.Tensor, s: torch.Tensor, block_size:int=128)-> torch.Tensor:"""
Dequantizes the given weight tensor using the provided scale tensor.
Args:
x (torch.Tensor): The quantized weight tensor of shape (M, N).
s (torch.Tensor): The scale tensor of shape (M, N).
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
Returns:
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
Raises:
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
"""assert x.is_contiguous()and s.is_contiguous(),'Input tensors must be contiguous'# 确保输入张量是连续的(即内存布局连续)assert x.dim()==2and s.dim()==2,'Input tensors must have 2 dimensions'# 确保输入张量 x 和 s 都是二维的
M, N = x.size()# 获取输入张量 x 的尺寸 M (行数) 和 N (列数)# 创建一个和 x 形状相同的新张量 y,用来保存反量化后的结果
y = torch.empty_like(x, dtype=torch.get_default_dtype())# 定义一个 grid 函数来计算 triton 内核所需的网格大小# triton.cdiv 是向上取整除法,用来确保我们分配足够的线程处理每个块
grid =lambda meta:(triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))# 调用 triton 内核 `weight_dequant_kernel` 进行反量化操作# 将 quantized weight `x` 和 scale `s` 与结果张量 `y` 一起传递给内核# `M`, `N`, `block_size` 作为额外的参数传递
weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)# 返回反量化后的张量 yreturn y
计算网格大小:
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE'])): 使用 triton.cdiv 来计算块的数量。triton.cdiv 是向上取整除法,用于确定每个维度需要多少个块来处理 M 和 N 大小的数据。meta['BLOCK_SIZE']) 是每个块处理的元素数量(默认值为 128)。