- 博客(97)
- 收藏
- 关注
原创 蛋白质翻译后修饰分析简介
蛋白质翻译后修饰蛋白质翻译后修饰 (Protein post-translational modifications,PTMs) 通过功能基团或蛋白质的共价添加、调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质的功能多样性。蛋白质组中任一蛋白质都能在翻译时或翻译后进行修饰。不同类型的修饰都会影响蛋白质的电荷状态、疏水性、构象或稳定性,最终影响其功能。这些修饰包括磷酸化、糖基化、泛素化、亚硝基化、甲基化、乙酰化、脂质化和蛋白水解。相较于没有发生修饰的蛋白,PTMs会导致特定序列分子量的增加。在蛋白翻译后
2021-04-13 13:39:47
9270
原创 甲基化调控分析
简介甲基化(methylation)为DNA化学修饰的一种形式,是蛋白质和核酸的一种重要的修饰。能够在不改变DNA序列的前提下,能够调节基因的表达和关闭,改变遗传表现。与癌症、衰老、老年痴呆等许多疾病的发生密切相关,是表观遗传学的重要研究内容之一。而DNA甲基化是DNA化学修饰的一种形式,是DNA序列上特定的碱基在DNA甲基转移酶(DNMT)的催化作用下,以S-腺苷甲硫氨酸(SAM)作为甲基供体,通过共价结合的方式获得一个甲基基团的化学修饰过程。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DN
2021-04-12 14:22:28
645
原创 代谢网络分析
简介代谢处于生命活动调控的末端,是驱动生命过程的化学引擎,产生能量来驱动各种细胞过程,降解和合成许多不同的分子。代谢网络把细胞内所有生化反应表示为一个网络,反映了所以参与代谢过程的化合物之间以及所有催化酶之间的相互作用,是对细胞代谢的抽象表达。研究代谢网络能帮助我们更好地认识和利用细胞代谢过程,从而促进疾病基础研究,药物开发等方向的发展。另一方面,网络的拓扑结构是网络形成和进化的反映,研究代谢网络的结构特征,能帮助我们认识代谢网络的形成演化机理,从而更好地理解疾病发生发展过程以及生命进化过程。应用领域
2021-04-10 15:44:04
2785
原创 带你初步了解生物网络分析
简介生物网络是复杂网络,也是以系统科学的思想研究生命的桥梁。网络中的节点可以是蛋白质,基因,RNA,DNA以及代谢物等,网络的边对应节点之间的物理、生化或功能上的相互作用。生物分子之间的相互作用并不是一成不变的,反应在基因调控网络上,节点之间的边会因时间、空间或外部环境的变化而发生变化。网络分析是生物网络的研究重点。网络中生物分子及其相互作用的显著变化,形成差异性网络,这种差异性变化对细胞信号传导、细胞发育、环境压力、药物治疗以及疾病状态的转变有重大的参考价值。目前常见的网络分析有基因调控网络,蛋白质相互
2021-04-09 16:12:03
2945
原创 单细胞调控网路分析
简介组织内细胞异质性的基础是细胞转录状态的差异,转录状态的特异性又是由转录因子主导的基因调控网络(GRNs)决定并维持稳定的。因此分析单细胞的GRNs有助于深入挖掘细胞异质性背后的生物学意义,并为疾病的诊断、治疗以及发育分化的研究提供有价值的线索。然而单细胞转录组数据具有背景噪音高、基因检出率低和表达矩阵稀疏性的特点,给传统统计学和生物信息学方法推断高质量的GRNs带来了挑战。随着生物信息学的发展,研发了不少软件用于单细胞调控网络的分析,如软件SCENIC( Single-cell regulatory
2021-04-09 09:55:28
1088
原创 转录因子调控网络分析
简介转录因子(Transcription Factors, TFs)是指能够以序列特异性方式结合DNA并且调节转录的蛋白质。转录因子通过识别特定的DNA序列来控制染色质和转录,以形成指导基因组表达的复杂系统。转录水平的调控是基因调控的重要环节,其中转录因子(Transcription Factor,TF)和转录因子结合位点(Transcription Factor Binding Site,TFBS)是转录调控的重要组成部分。基因转录调控网络由于其可以直观地显示基因表达调控关系,已成为生物学研究的热点之一
2021-04-07 16:20:23
4253
1
原创 CircRNA–miRNA–mRNA调控网络分析
简介环状RNA(circRNA)是一种存在于真核细胞内,具有稳定环状结构的RNA分子。它主要通过充当miRNA的分子海绵对miRNA进行吸附,部分circRNA可竞争性结合miRNA,解除miRNA对靶基因的抑制作用,上调靶基因的表达,进而在转录水平上对靶基因的表达进行调控。miRNA与疾病的发生密切相关,因此,circRNA在疾病的发生过程中也发挥重要作用。此外,环状RNA可以通过结合不同种类的功能蛋白,分别在转录前、后及翻译水平严格调控细胞生殖生长等过程。环状RNA作为研究持续火热的明星分子,不同于对
2021-04-07 11:31:36
6284
原创 基因共表达网络分析图解
简介随着高通量生物实验技术的快速发展,特别是基因芯片和新一代测序技术的发展,全基因组范围内的基因表达数据呈爆炸式增长,利用网络生物学的方法对高通量基因表达数据进行分析和挖掘已经成为生物信息学重要的研究方向。通过基因共表达网络分析方法,可以将在功能上相关的基因识别为一个模块(module),通过对模块的进一步的分析,能够实现筛选module的核心基因,关联性状,代谢通路建模,建立基因互作网络等高级分析。Gene co-expression(基因共表达)是一种使用大量基因表达数据构建基因间的相关性,从而挖掘基
2021-04-02 16:29:35
25741
原创 蛋白质残基相互作用网络分析
简介蛋白质由20种不同的氨基酸经肽键聚合组成,通过形成特定的空间三级结构以实现催化和调控不同的生物学功能,不同的氨基酸排列顺序会形成不同的蛋白质结构,蛋白质三维空间结构决定了其生物学功能。因此,蛋白质三维结构研究对理解其如何发挥生物学功能和设计相关的药物具有重要意义。其中,蛋白质残基相互作用网络分析普遍应用于蛋白质相关问题的研究。该方法中网络的节点为组成蛋白质的残基,网络的边为非共价键残基相互作用,如范德瓦尔斯和静电相互作用等。基于蛋白质残基相互作用网络,可以进一步利用图论的方法研究蛋白质结构稳定性,蛋白
2021-03-31 16:05:08
2053
原创 蛋白质互作网络分析
简介蛋白质互作网络(protein protein interaction network,PPI network)是由蛋白通过彼此之间的相互作用构成,来参与生物信号传递、基因表达调节、能量和物质代谢及细胞周期调控等生命过程的各个环节。系统分析大量蛋白在生物系统中的相互作用关系,对了解生物系统中蛋白质的工作原理,了解疾病等特殊生理状态下生物信号和能量物质代谢的反应机制,以及了解蛋白之间的功能联系都有重要意义。在生物医药领域有助于从系统的角度研究疾病分子机制、发现新药靶点等等。STRING数据库STRI
2021-03-31 09:17:23
6203
原创 多组学联合分析整体思路
多组学联合分析整体思路简介对于发病原因复杂的疾病通常很难用单一的理论模式进行表述。系统生物学研究方法为疾病发病机制的研究提供了新思路。系统生物学是通过整合生物系统中诸多相互联系和作用的组分来研究复杂生物过程的机制,即研究生物系统中所有组成成分(基因、RNA、蛋白质、表观遗传和代谢产物等)的构成以及在特定条件下这些组分间的相互作用和关系,并分析生物系统在某种或某些因素干预扰动下在一定时间内的动力学过程及其规律。高通量的组学(Omics)技术为系统生物学提供了海量的实验数据,而多组学联合分析技术除了提供数据
2021-03-29 16:28:02
10844
原创 NGS测序数据和Microarray芯片数据在基因表达中的应用
基因表达分析的意义在疾病医药领域,基因表达分析常常被用于不同阶段的研究中。 如在疾病研究阶段,在不同背景下对mRNA的表达水平进行比较,针对同一物种,不同组织,可以研究基因在不同组织中的表达情况,或者针对同一组织,不同病理或者生理状态下,基因的差异表达情况。在药物研究阶段,对是否用药的情况下进行差异表达基因分析,查找与药物反应相关的基因,以及药物代谢情况。最终找到细胞特异性,疾病相关,药物代谢相关的基因表达模式,挖掘 基因在细胞活动中的功能,基因间的相互作用信息。最终运用于疾病的预测,诊断以及治疗中。常用
2021-03-26 15:17:36
1545
原创 一文看懂基因表达分析流程!
基因表达分析简介基因表达分析是指直接或者间接测量样本内的全部或者部分基因的表达情况,一般是对转录产物mRNA进行测量。并且可以同时对不同基因和/或不同样本的RNA表达水平进行比较。这种分析可以帮助科学家识别造成表型差异的分子基础,并选择目标基因进行深入研究。基因表达的常用检测方法有:实时荧光定量PCR(qRT-PCR)、基因芯片(Microarray)、表达序列标签(Expressed Sequence Tag,EST)、基因表达系列分析(Serial Analysis of Gene Expressi
2021-03-25 16:10:00
13397
原创 带你初步了解药物设计中的生物信息学
带你初步了解药物设计中的生物信息学人类基因组计划和蛋白组计划的实施、大量疾病相关基因及作用靶点的发现、生物信息学的兴起,为新药设计提供了新的理论和思路。针对疾病相关的靶标生物大分子的直接药物设计已逐渐成为药物设计的主要方法。直接药物设计方法可分为两类: (1)全新药物设计: 即根据靶点分子与药物相结合的活性部位的几何形状和化学特性,设计出与其相匹配的全新结构的药物分子。( 2 ) 数据库搜寻: 将化合物三维结构数据库中分子与靶标分子逐一对接,同时优化小分子化合物的取向及构象,寻找小分子与靶标大分子作用的最
2021-03-23 14:24:53
2772
1
原创 临床医学中的生物信息学
临床医学中的生物信息学21世纪是生命科学的时代,也是信息时代随着人类基因组计划的实施,有关核酸蛋白质的序列和结构数据呈指数增长,相关信息也迅速增长;意味着基因组的研究将全面进入信息提取和数据分析的崭新阶段。面对巨大而复杂的数据,运用计算机管理数据、控制误差、加速分析过程势在必行。生物信息学对于管理现代生物学和医学数据具有重大意义,并已广泛地渗透到医学的各个研究领域中,在疾病相关基因的发现、疾病临床诊断、疾病的个体化治疗、新的药物分子靶点的发现、创新药物设计以及基因芯片的设计与数据处理等医学应用研究方面将发
2021-03-22 15:03:00
2398
原创 生物信息学在疾病基础研究中的应用
生物信息学在疾病基础研究中的应用疾病基础研究随着人民生活水平的提高以及环境的变化,各种疾病如高血压,糖尿病,高血脂等各种各样的疾病发病率在不断提高。疾病是一个极其复杂的过程,许多情况下,从健康到疾病是一个由量变到质变的过程。通过对疾病发病机制,遗传机理等基础信息进行研究,从而为预防疾病的发生,提高疾病的诊断效率以及改进治疗方案提供理论基础。生物信息学在疾病基础研究中的应用随着高通量技术的出现及其在疾病基因组、蛋白组学、转录组、代谢组、微生物组以及单细胞组学研究中的应用,产生了大量的疾病测序数据以及形
2021-03-22 11:55:29
2685
原创 生物信息学分析在临床前研究中的应用
生物信息学分析在临床前研究中的应用临床前研究简介临床前研究是指药物进入临床研究之前所进行的化学合成或天然产物提纯研究,药物分析研究,包括药效学、药动学和毒理学研究以及药剂学的研究以及对细胞和动物潜在治疗干预措施的药物评估。然后,根据药物在疾病模型中的有效性和安全性来选择参加临床试验的候选人。在临床试验开始之前,所有药物都需要来自各种毒理学临床前研究的数据,以支持其对人体的潜在安全性。生物信息学分析在临床前研究中的应用随着基因组的发展,基因组学方法经常用于药物开发的目标识别/验证阶段,但在临床前阶段经
2021-03-19 16:44:16
1331
原创 生物信息学技术在罕见病研究中的应用
生物信息学技术在罕见病研究中的应用罕见病简介罕见病,或称罕见疾病,是指仅在极少数人身上发生的稀罕病症,所以也被称为孤儿病。 大部分的罕见病都是遗传病,即使疾病症状不会生来就有,也会伴随患者终身。许多罕见病在患者生命早期发病,大约有30%患有罕见病的儿童会在5岁之前死亡。根据世界卫生组织(WHO)的定义,罕见病为患病人数占总人口的0.65‰~1‰的疾病,世界各国根据自己国家的具体情况,对罕见病的认定标准存在一定的差异。罕见病有α-地中海贫血,急性早幼粒细胞白血病,肢端肥大症,苯丙酮尿症,长QT综合征,溶酶
2021-03-18 15:57:46
786
原创 生物信息技术在肾脏病研究中的应用
生物信息技术在肾脏病研究中的应用肾脏病简介肾脏没有像心脏般跳动的状态,也不像胃会因吃得过饱而有胀痛的感觉。它在人体内扮演着体内清道夫的角色,过滤并清除代谢产物。正是由于没有疼痛的表现,因此,等到出现症状时(如乏力、容易疲劳、腰酸、腰痛、血尿等),肾功能可能已丧失大半,影响的范围不仅只是泌尿系统,也会传至循环系统,对身体健康造成巨大的危害。肾脏病是常见病和多发病,如果恶化可能发展为尿毒症,严重危害生命健康。慢性肾脏病已成为继心脑血管病、肿瘤、糖尿病之后又一种威胁人类健康的重要疾病,成为全球性公共卫生问题。
2021-03-17 17:02:06
609
原创 生物信息学在感染和疫苗研究中的应用
生物信息学在感染和疫苗研究中的应用简介微生物无处不在,如土壤中、淡水中、海水中,乃至海底下、空气中均有。大多微生物存在于人体皮肤、口腔、呼吸道、肠道和生殖道。尽管微生物似乎到处都有,人体却很少因为微生物的侵如后引起感染。有时候就算引起了感染,也因为感染十分轻微而不引起任何症状。但是,其中也有极少部分微生物能直接引起疾病,如细菌、立克次氏体、病毒、螺旋体等。一种微生物是否为宿主的无害伴侣或侵犯机体引起疾病取决于微生物本身的特点和人体的防御能力。而疫苗是指用各类病原微生物制作的用于预防接种的生物制品,如疫苗
2021-03-16 17:02:46
1788
原创 生物信息学在心血管系统疾病中的应用
生物信息学在心血管系统疾病中的应用心血管疾病简介心血管疾病是一组心脏和血管疾患的名称,心血管疾病是全球的头号死因:每年死于心血管疾病的人数多于其它任何病因。心脏病发作和中风通常属于急症,主要是由于堵塞导致血液不能流入心脏或大脑。这种情况发生的最常见原因是在心脏或脑部供血血管内壁上堆积有脂肪层。中风也可能是因脑血管或血栓出血造成。心血管疾病的病因通常是同时存在多个危险因素,比如烟草使用、不健康饮食和肥胖、缺乏身体活动及有害使用酒精、高血压、糖尿病和高脂血症。常见的心血管疾病有高血压(血压升高),冠心病(心
2021-03-15 16:33:03
2118
原创 生物信息技术在肝病研究中的应用
生物信息技术在肝病研究中的应用肝病简介肝脏疾病种类繁多,以乙肝病毒所致的急慢性肝炎、肝硬化和肝癌最为多见。同时,随着各类药物的使用,药物相关性肝病也逐年增多,如常见的非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)。肝脏作为机体代谢的重要器官,一旦受损,将影响全身各个器官的功能。其中,肝衰竭是严重肝损伤的极端表现,可表现为肝性脑病、肝肾综合征、凝血功能异常等。已有研究表明,肝脏疾病发生后,不但引起肝脏功能的损伤,还将引起全身代谢的紊乱。最常见的有芳香/
2021-03-12 10:59:46
340
原创 生物信息学技术在内分泌疾病研究中的应用
生物信息学技术在内分泌疾病研究中的应用内分泌疾病简介人体内分泌系统包括胰腺、甲状腺、甲状旁腺、松果体、下丘脑、肾上腺和垂体腺、卵巢和睾丸,同时还涉及众多针对激素做出反应或改良、代谢激素的器官。内分泌疾病是内分泌腺或内分泌组织本身的分泌功能和(或)结构异常时发生的症候群。还包括激素来源异常、激素受体异常和由于激素或物质代谢失常引起的生理紊乱所发生的症候群。常见的内分泌疾病有糖尿病,垂体瘤,高血脂,甲状腺炎以及糖原贮积症等。生物信息学技术在内分泌疾病研究中的应用 近年来,内分泌代谢性疾病的诊断治疗以及发
2021-03-11 13:35:24
544
原创 生物信息学技术在血液病中的应用
生物信息学技术在血液病中的应用血液病简介血液病是指原发于造血系统的疾病,或影响造血系统伴发血液异常改变,以贫血、出血、发热为特征的疾病。造血系统包括血液、骨髓单核一巨噬细胞系统和淋巴组织,凡涉及造血系统病理、生理,并以其为主要表现的疾病,都属于血液病范畴。 目前,引起血液病的因素很多,诸如:化学因素、物理因素、生物因素、遗传、免疫、污染等,都可以成为血液病发病的诱因或直接原因。常见的血液病有白血病,地中海贫血,巨幼细胞性贫血等。生物信息学技术在血液病中的应用生物信息学是20世纪80年代以来随着人类基
2021-03-10 14:49:45
824
原创 生物信息分析技术在中枢神经系统疾病研究中的应用
生物信息分析技术在中枢神经系统疾病研究中的应用中枢神经系统疾病简介中枢神经系统(central nervous system,CNS)是神经系统的主要部分。其位置常在动物体的中轴,由明显的脑神经节、神经索或脑和脊髓以及它们之间的连接成分组成。中枢神经系统退行性疾病是指一组由慢性进行性的中枢神经组织退行性变性而产生的疾病的总称。病理上可见脑和(或)脊髓发生神经元退行变性、丢失。主要疾病包括帕金森病(Parkinson’s disease, PD)、阿尔茨海默病(Alzheimer’s disease, A
2021-03-09 11:52:47
1247
原创 生物信息分析技术在皮肤病研究中的应用
生物信息分析技术在皮肤病研究中的应用皮肤病简介皮肤是人体最大的器官,皮肤病(dermatosis)是发生在皮肤和皮肤附属器官疾病的总称。皮肤病的种类繁多,引起皮肤病的原因也很多,比如感染因素引起的皮肤病,如麻风、疥疮、真菌病、皮肤细菌感染。还有其他引起皮肤病的内外在因素,如机械性、物理性、化学性、生物性、内分泌性、免疫性等,如多种内脏发生的疾病也可以在皮肤上有表现。常见的皮肤病有头皮屑,特应性皮炎和牛皮癣等。生物信息学技术在皮肤病研究中的应用皮肤是主要的组织表面,它是由各类微生物和皮肤表面的组织、细
2021-03-08 16:44:06
763
原创 生物信息学呼吸系统疾病研究中的应用
生物信息学呼吸系统疾病研究中的应用呼吸道疾病简介呼吸道疾病包括上、下呼吸道急、慢性炎症,呼吸道变态反应性疾病。常见的疾病有肺纤维化,间皮瘤,慢性阻塞性肺疾病(COPD)以及肺癌等。 其中呼吸道感染是临床常见疾病。在世界范围内,呼吸道感染在成人及儿童常见疾病中的发病率及病死率居于第2位,在全球疾病负担排名中仅次于缺血性心脏病。呼吸道感染可由细菌、病毒、真菌等多种病原体引起,病原体检测是肺部感染精准治疗的基础,也是疾病得以有效防控的前提。但呼吸道感染病原学构成复杂,临床诊断中病原体的判断较为困难。随着测序技
2021-03-06 14:22:59
590
原创 生物信息分析技术在胃肠道疾病研究中的应用
生物信息分析技术在胃肠道疾病研究中的应用胃肠道疾病简介胃肠道是人体最大的免疫器官,也是人体最大的排毒器官。胃肠道指的是从胃幽门至肛门的消化管常见的胃肠道疾病有:胃炎,克罗恩病,溃疡性结肠炎,阑尾炎,肠易激综合征等。现如今,胃肠道疾病发病率高,其病程较长、治疗较难、反复发作等均是胃肠道疾病的特点。由于胃肠道疾病复杂的发病机制,为其生物学研究的遗传机制带来重重困难。此外,在人的肠道中栖息着大量微生物, 在消化吸收、能量代谢、免疫调节、抗病能力等方面发挥着重要作用, 与很多疾病的发生发展相关。 通过生物学手段
2021-03-04 17:03:16
713
1
原创 肿瘤(Oncology)生物信息学分析简介
肿瘤(Oncology)生物信息学分析简介肿瘤简介肿瘤是临床上患者死亡最常见的原因,是发生在机体某个系统多个器官、某个器官多个系统,或者这两种情况共同存在的一种复杂的疾病。肿瘤分为良性肿瘤和恶性肿瘤。而其中的恶性肿瘤,就是常说的癌症。癌症是由于一些遗传改变和表观遗传改变而导致的疾病,在它最简单的形式中,癌症是一种由于一个细胞基因组变化而导致的遗传性疾病。这种遗传改变包括点突变、插入突变、缺失突变和染色体易位等。这些基因的变化可以导致细胞和组织生长异常,这就是肿瘤的表型特征。生物信息学在肿瘤研究中的应用
2021-03-03 14:13:47
5133
1
原创 全基因组SNP分型(Whole Genome SNP Genotyping)分析简介
全基因组SNP分型(Whole Genome SNP Genotyping)简介全基因组SNP分型单核苷酸多态性(single nucleotide polymorphism,SNP)是遗传学研究中重要的材料。近年来,全基因组SNP标记开发方法的发展使得研究者们能够以较低成本获得丰富的基因组标记,大大推动了基因组水平的相关研究。基因组预测从已知基因型数据和表型数据的个体建立训练模型,对未知表型的个体进行基因型和表型预测,在育种领域具有重要意义。全基因组SNP的分型策略结合基因组预测方法,构成了动物基因组
2021-03-01 15:54:45
11698
2
原创 全转录组关联分析(TWAS)简介
全转录组关联分析(TWAS)简介简介全基因组关联研究(GWAS)已经确定了数千种与许多复杂特征相关的遗传变异。然而,它们的生物学机制在很大程度上仍然是未知的。最近提出的全转录组关联分析(transcriptome-wide association studies,TWAS)是研究与变异性状关联的潜在基因调控机制的宝贵工具。具体来说,TWAS整合了GWAS和基于一组共同变异的表达图谱研究,旨在确定其GReX与表型相关的基因。目前已经开发了各种方法或软件(如PrediXcan,S-prediXcan,Fus
2021-02-26 13:59:05
16936
原创 全基因组关联分析(GWAS)简介
全基因组关联分析(GWAS)简介全基因组关联分析(GWAS)是广泛用于寻找复杂遗传疾病关联基因的重要手段。通过遗传学研究找到了很多致病突变体,这些突变体是指染色体上的变异位点。全基因组关联分析试图找到染色体上的变异位点,并研究这些变异位点与疾病或其他性状的关联。目前,全世界范围内已开展了4000多项GWAS研究,发现了超过10万个与各种疾病(如癌症,高血压,II型糖尿病,类风湿性关节炎等)以及重要生理性状关联的基因位点。全基因组关联分析应用基因组中数以百万计的单核苷酸多态性(SNP)为分子遗传标记,利用回
2021-02-25 15:45:12
55246
原创 Indel (Insertion and Deletion)分析简介
Indel (Insertion and Deletion)分析简介InDel 简介InDel 是指基因组中小片段的插入或缺失序列,其长度在 1-50bp 之间。原因在于Illumina测序的reads(读长)大小为100bp左右,包括单端测序(single-end, 100bp),双端测序(paired-end,2 x 100bp)两种。因此在序列比对SNP calling时,能够检测到的可靠的Indel大多小于100bp,通常最大在50bp左右。 Small InDel 变异一般比SNP 变异少,同
2021-02-24 14:19:44
16763
1
原创 结构变异( SV )分析介绍
结构变异( SV )分析基因组结构性变异(Structure Variantions,简称SVs)通常指基因组上大长度的序列变化和位置关系变化。基因组结构性变异类型很多,包括长度在50bp以上的长片段序列插入或者删除(Big Indel)、串联重复(Tandem repeate)、染色体倒位(Inversion)、染色体内部或染色体之间的序列易位(Translocation)、拷贝数变异(CNV)以及形式更为复杂的嵌合性变异。结构变异检测常用的方法有:基于芯片的检测,包括芯片比较基因组杂交(array
2021-02-23 15:15:44
23797
原创 SNP Fine Mapping (精细映射分析)
SNP Fine Mapping (精细映射分析)SNP Fine Mapping简介fine mapping是GWAS之后的精细分析,通过GWAS分析鉴定出很多variation,但是不清楚哪些是casual variation。通过fine mapping,借助各种统计学模型(如贝叶斯等)来推测出哪些才是真正的casual variation。Fine-mapping变异分析的方法共有五种:(1)找与功能元件的overlap;(2)利用等位基因特异性变异的效应;(3)找破坏TFBS转录因子结合位点的
2021-02-22 11:23:25
6791
原创 拷贝数变异(Copy number variation, CNV)分析简介
拷贝数变异(Copy number variation, CNV)分析简介拷贝数变异简介(CNV)CNV,即拷贝数变异(Copy number variation, CNV),是由基因组发生重排而导致的, 一般指长度为 1 kb 以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。亚微水平的基因组结构变异是指 DNA 片 段 长 度 在 1Kb-3Mb 的基因组结构变异, 包括缺失、插入、重复、重排、倒 位、DNA 拷贝数目变化等,这些统称为 CNV (也称为拷贝数多态性(copy
2021-02-08 22:05:17
21546
原创 基因功能注释分析的意义
基因功能注释分析的意义基因功能注释分析简介基因功能的注释依赖于基因结构或者序列,将基因序列或蛋白序列和主流数据库进行比对获取该基因的功能信息,最终对预测的编码基因进行功能注释。常见的功能注释数据库有:Nr:NCBI官方非冗余蛋白数据库; 如果涉及DNA序列,就用nt库。Pfam: 蛋白结构域注释的分类系统。 Swiss-Prot: 高质量的蛋白质数据库。KEGG: 代谢通路注释数据库。GO: 基因本体论注释数据库。COG :是由NCBI创建和维护的蛋白质数据库。在生物信息学中,常用GO功能注释和KEGG
2021-02-06 14:32:45
8707
原创 聚类分析-K-means clustering 在生物信息学中的应用
聚类分析-K-means clustering 在生物信息学中的应用聚类是一种涉及数据点分组的机器学习技术。给定一组数据点,可以使用聚类算法将每个数据点到分类到图像中的特定组中。理论上,同一组中的数据点应具有相似的属性和特征,而不同组中的数据点的属性和特征则应高度不同。聚类是无监督学习的一种方法,是用于多领域统计数据分析的常用技术。在生物学领域, 有效地将不同的基因序列集进行有效的分类、功能基因识别、对蛋白质物理化学性质进行聚类可以预测其功能,推导植物和动物的分类,推断出物种的系统发育树,获得对种群固有的
2021-02-04 13:41:22
4459
原创 聚类分析-层次聚类(Hierarchical Clustering)在生物信息学中的应用
聚类分析-层次聚类(Hierarchical Clustering)解析层次聚类层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。层次聚类可以被分为两类:自上而下和自下而上,其中常用的自下而上算法(Bottom-up algorithms),也称为hierarchical agglomerative clustering 或HAC。层次聚类常用的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间
2021-02-04 10:49:50
11640
原创 COG注释分析图解
COG注释分析COG数据库简介COG(Clusters of Orthologous Groups )注释是差异基因功能注释的一种方法。COG是由NCBI创建并维护的蛋白数据库,是对基因产物进行同源分类,较早的识别直系同源基因的数据库,通过对多种生物的蛋白质序列大量比较而来。COG分为两类,一类是原核生物的,另一类是真核生物。原核生物的一般称为COG数据库;真核生物的一般称为KOG数据库。通过比对可以将某个蛋白序列注释到某一个COG中,每一簇COG由直系同源序列构成,从而可以推测该序列的功能。COG数据
2021-02-02 15:57:54
23714
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅