关于tensorflow中 tf.logging.set_verbosity日志消息

在tensorflow中有函数可以直接log打印,这个跟ROS系统中打印函数差不多。

TensorFlow使用五个不同级别的日志消息。 按照上升的顺序,它们是DEBUG,INFO,WARN,ERROR和FATAL。 当您在任何这些级别配置日志记录时,TensorFlow将输出与该级别相对应的所有日志消息以及所有级别的严重级别。 例如,如果设置了ERROR的日志记录级别,则会收到包含ERROR和FATAL消息的日志输出,如果设置了一个DEBUG级别,则会从所有五个级别获取日志消息。 # 默认情况下,TENSFlow在WARN的日志记录级别进行配置,但是在跟踪模型训练时,您需要将级别调整为INFO,这将提供适合操作正在进行的其他反馈。

下面给出例子:

from __future__ import print_function
import tensorflow as tf
from preprocessing import preprocessing_factory
import reader
import model
import time
import os

tf.app.flags.DEFINE_string('loss_model', 'vgg_16', 'The name of the architecture to evaluate. '
                           'You can view all the support models in nets/nets_factory.py')
tf.app.flags.DEFINE_integer('image_size', 256, 'Image size to train.')
tf.app.flags.DEFINE_string("model_file", "models.ckpt", "")
tf.app.flags.DEFINE_string("image_file", "a.jpg", "")

FLAGS = tf.app.flags.FLAGS

def main(_):

    # Get image's height and width.
    height = 0
    width = 0
    with open(FLAGS.image_file, 'rb') as img:
        with tf.Session().as_default() as sess:
            if FLAGS.image_file.lower().endswith('png'):
                image = sess.run(tf.image.decode_png(img.read()))
            else:
                image = sess.run(tf.image.decode_jpeg(img.read()))
            height = image.shape[0]
            width = image.shape[1]
    tf.logging.info('Image size: %dx%d' % (width, height))


if __name__=='__main__':
    print("caoakfa")
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run()

运行结果为:



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值