灵巧手抓持<分类><仿真>

获取灵巧手抓取物体时的抓持类型,需要考虑:手本身的结构、被抓取物体的形状尺寸、抓持操作任务的条件。

研究方法:基于模型的方法、基于数据驱动的方法

基于模型的方法:建立灵巧手抓持相关的运动学和动力学模型+建立目标函数+求解最优抓取类型——缺:求解多个优化函数,运算复杂,计算量大

基于数据驱动的方法:利用经验信息和传感信息对数据进行分析,求解得到抓持类型——特点:更关心物体的表达和识别感知过程


灵巧手抓持分类

Schlesinger和Taylor将抓持类型定义为6种,分别为圆柱抓握(Cylindrical)、钩形抓握(Hook)、指尖抓握(Fingertip)、球形抓握((Spherical)、掌心抓握(Palwar)及侧边抓取(Laternal)。

Napier 综合考虑抓持的稳定性、灵活性以及人手与物体的接触面积等,将人手常用的抓持方式分为强力抓持(Power)和精细抓持(Precision) ,又根据人手抓持物体时是否对物体形成包络将强力抓持分为缠绕式抓持和非缠绕式抓持。

Cutkosky研究人手的各种抓持方式,将抓持类型细化为16种。

Stanford/JPL灵巧手设定了包络 ( Wrap)、抓握(Grip)和捏取(Pinch)三个基本抓持方式。

Sollerman等人根据日常生活中人手抓持物体的使用习惯分成8种抓持动作,并使用统计学的方法得出这8种抓持动作在生活中使用频率达到88%,基本上可以满足人们日常生活中对于物体抓持的动作需求。
        包括:强力抓取、夹握~、跨握~、球形~、侧捏~、掌心~、钩形~、精密~
        因此,本文采用Sollermat等人定义的抓持动作作为灵巧手的八种抓持类型。

灵巧手抓持仿真

机器人灵巧手抓持仿真平台=视觉传感器(获取图像信息)+操作控制界面(控制视觉传感器对被抓物体图像进行采集和显示)+虚拟灵巧手(人工模式下抓持类型的选取)

仿真环境和灵巧手模型

本文需要:
(1)机器宇航员2号(Robonaut 2)灵巧手 = 5个手指共12个自由度
(2)安装相关功能包(使用mkdir命令创建一个r2工作空间,并从 bitbucket源代码托管网站上下载并安装Robonaut 2模型和Robonaut 2控制器,进入工作空间并编译。)
(3)Gazabo载入Robonaut 2,并在gazebo中创建一个gazebo_ros_control功能包,用于实现Gazebo和Movelt之间的双向通信。其中,功能包中提供了gazebo_ros_control控制器插件模块。启动Robonaut2机器人Movelt主程序。此时,在终端输入rqt_graph 显示节点状态图如下:

 操作控制界面

PyQt5:设计创建机器人灵巧手操作控制系统的GUI界面。|
控制界面的作用:(1)对视觉传感器采集的被抓持物体图像信息进行在线显示;(2)实现通过界面按钮等控制灵巧手仿真模型的关节运动。

<think>好的,我现在需要帮用户寻找关于灵巧在MATLAB中的仿真方法或示例教程。首先,我得理解用户的需求。灵巧通常指的是多指机械,可能涉及运动学、动力学建模以及控制算法的仿真。用户提到“灵巧”,可能关注的是如何用MATLAB进行建模和仿真,可能需要类似SCARA机器人的例子作为参考。 接下来,我要回忆一下已有的引用内容。用户提供的引用中有几个相关的点。引用[3]提到了四自由度SCARA机器人的运动学和动力学MATLAB建模与仿真,这可能与灵巧的建模有相似之处,比如都需要正运动学、逆运动学分析。此外,引用[5]讨论了浣熊优化算法在任务调度中的应用,虽然不直接相关,但可能涉及优化算法在控制中的应用,不过暂时可能用不上。 用户的问题中没有直接提到灵巧的引用,但引用[3]的SCARA机器人建模过程可能可以作为参考。灵巧通常有更多自由度,结构更复杂,但建模的基本步骤类似:建立运动学模型,进行动力学分析,设计控制算法,最后仿真验证。 接下来,我需要思考如何构建回答。首先,可能需要分步骤介绍灵巧的建模和仿真方法,参考SCARA机器人的步骤。然后,可能需要结合MATLAB的工具箱,比如Robotics System Toolbox,Simulink,以及Simscape Multibody。这些工具箱提供了机器人建模和仿真的工具,可能用户需要知道如何使用这些工具。 另外,用户可能需要示例代码或教程链接。虽然现有引用中没有直接关于灵巧的示例,但可以建议用户参考MATLAB官方文档,或者搜索特定的示例,比如多指机械控制。此外,引用[4]提到了LFM信号的生成,这可能与传感器仿真有关,但不确定是否有帮助。 可能的步骤包括: 1. 建立运动学模型:使用DH参数,建立各关节的坐标系,推导正运动学方程。 2. 动力学建模:使用拉格朗日方程或牛顿-欧拉方法,考虑质量和惯性参数。 3. 控制算法设计:比如PID控制、逆动力学控制或自适应控制。 4. 仿真实现:在MATLAB/Simulink中搭建模型,进行运动跟踪或仿真。 同时,需要提醒用户可能需要的工具箱,并建议参考现有机器人示例,如SCARA或机械臂的建模,来类比灵巧的结构。还可以建议用户查阅MATLAB的官方示例和文档,或者第三方资源如GitHub上的开源项目。 在生成相关问题的时候,可能需要围绕灵巧的建模步骤、工具箱使用、控制方法优化等方面提问,帮助用户进一步深入。</think>### 灵巧在MATLAB中的仿真方法及示例 灵巧的MATLAB仿真通常涉及运动学建模、动力学分析、控制算法设计及可视化实现。以下是关键步骤和示例方法: #### 1. **运动学建模** 灵巧由多个关节和连杆组成,需通过正运动学(笛卡尔空间到关节空间)和逆运动学(关节空间到笛卡尔空间)描述其运动特性。 - **DH参数法**:使用Denavit-Hartenberg参数建立各关节坐标系,推导位姿变换矩阵。例如,四指灵巧每个指可视为3~4自由度的机械链。 - **代码片段示例**: ```matlab % 定义指关节的DH参数(示例为3自由度指) L(1) = Link('d', 0, 'a', 0.1, 'alpha', pi/2); L(2) = Link('d', 0, 'a', 0.1, 'alpha', 0); L(3) = Link('d', 0, 'a', 0.1, 'alpha', 0); finger = SerialLink(L, 'name', 'finger'); finger.plot([0, pi/4, pi/4]); % 绘制指在初始关节角下的姿态 ``` #### 2. **动力学建模** 基于拉格朗日方程或牛顿-欧拉法建立动力学模型,考虑质量、惯量及外部力作用。 - **拉格朗日方程**:$$ \tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + G(q) $$ 其中$q$为关节角,$M$为质量矩阵,$C$为科氏力项,$G$为重力项[^3]。 - **Simscape Multibody工具**:可通过图形化界面搭建灵巧多体模型,并自动生成动力学方程。 #### 3. **控制算法实现** - **位置控制**:PID控制器跟踪关节角度轨迹。 - **力/位混合控制**:结合力传感器反馈实现取力调节。 ```matlab % 示例:PD控制器(关节空间) Kp = diag([100, 100, 100]); Kd = diag([10, 10, 10]); q_desired = [0.5, 0.3, 0.2]; % 目标关节角 tau = Kp*(q_desired - q_current) + Kd*(0 - dq_current); % 计算控制力矩 ``` #### 4. **仿真与可视化** - **MATLAB Robotics Toolbox**:支机械臂的正/逆运动学计算及动画演示。 - **Simulink仿真**:集成控制算法与动力学模型,验证取稳定性(如图1)。 ![灵巧仿真示意图](https://via.placeholder.com/300x200) #### 5. **参考资源** - **MATLAB官方示例**:搜索"Robotic Hand Simulink Model"或参考文档《Robotics System Toolbox User Guide》。 - **第三方教程**:GitHub开源项目如`matlab-robotic-hand-simulation`提供完整代码框架[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值