On the Comparison of Gauge Freedom Handling in Optimization-based Visual-Inertial State Estimation

基于优化的视觉-惯性状态估计系统中,规范自由度处理方法的(Gauge Freedom Handling)比较?

摘要

众所周知,视觉-惯性状态估计系统 is possible up to a 四自由度(DoF)变换(沿重力的旋转和平移),并且额外的DoF(“规范自由度”)必须正确处理。尽管多种不同的处理规范自由度的方法已经在实践中得到了使用,但目前还没有研究来系统地分析这些方法的差异。在本文中,我们第一次比较分析了基于优化的视觉 - 惯性状态估计系统中处理规范自由度的不同方法。我们通过实验比较了三种常用方法:1.将不可观状态(the unobservable states)固定为某些给定值,2.给这些不可观状态设置一个先验,或者让这些不可观状态在优化期间自由进化。具体来说,我们表明了(show that)(i)三种方法的准确性和计算时间相似,自由规范方法(free gauge approach)略快;(ii)自由规范方法的协方差估计显得截然不同,但实际上与其他方法紧密相关。我们的研究结果在仿真和实际数据集中都得到了验证,可用于设计基于优化的视觉-惯性状态估计算法。

Ⅰ. 介绍

视觉-惯性传感器融合是机器人领域的一个活跃的研究领域。相机和惯性传感器是互补的[1],两者的结合提供了可靠和准确的状态估计。虽然大多数关于VI融合的研究都集中在基于滤波器的方法[2],[3],[4],但非线性优化在过去几年中变得越来越流行。与基于滤波器的方法相比,基于非线性优化的方法受到线性化误差累积的影响较小。它们(基于非线性优化的方法)的主要缺点,即高计算成本,已经通过硬件和理论的进步而得到缓解[5],[6]。使用使用非线性优化的方法,最近的工作[5],[7],[8],[9]在极具挑战性的环境中,显示了令人印象深刻的实时VI状态估计结果。

虽然这些工作具有相同的基本原理,即将状态估计问题转化为非线性最小二乘优化问题来求解,但它们使用了不同的方法来处理VI系统中不可观的DoF。众所周知,在VI系统中,全局位置(global position)和偏航角(yaw)是不可观的[3],[10],在本文中我们称这几个不可观状态为规范自由度(按照BA领域的惯例)[11]。VI系统有这些规范自由度,则获得唯一解的一种直观方法是在优化[12]过程中固定相应的状态(即参数)。另一种可能的方法是在不可观状态上设置先验,而该先验在优化[5],[8],[13],[7]中本质上是充当虚拟测量。最后,还有一中方法就是允许优化算法在迭代期间自由地改变不可观状态。虽然这三种方法都证明在现有文献中有效,但没有对它们在VI状态估计中的差异进行比较研究:它们通常作为实施细节呈现,因此没有得到很好的研究和理解。此外,虽然类似问题在BA问题中已经得到了研究(例如,[11],[14]在单目案例中有7个不可观的DoF),但据我们所知,这样的研究在VI系统中还没有完成(有4个不可观察的DoF)。

在这项工作中,我们给出了基于优化的视觉-惯性状态估计系统中处理规范自由度的不同方法的第一次比较分析。我们在仿真和真实数据上比较了如下方法:即规范自由度固定(gauge fixation)方法,规范自由度先验(gauge prior)方法和自由规范自由度(free gauge)方法,在准确性,计算成本和估计的协方差(该指标是SLAM感兴趣的[16])。虽然所有这些方法在估计误差方面具有相似的性能,但由于收敛所需的迭代次数较少,因此自由规范方法略快。我们还发现,正如[7]所述,在自由规范自由度方法中,由优化产生的协方差与任何特定的参考系都没有关联(与规范自由度固定方法相反),这使得解释不确定性的含义变得困难。然而,在这项工作中,我们进一步表明,通过应用协方差变换,自由规范自由度方法得到的协方差实际上与其他方法所得的密切相关(见图1)。

本文的其余部分安排如下。在第二节中,我们介绍了基于优化的VI状态估计问题及其非唯一解。在第三节中,我们介绍了处理规范自由度的不同方法。然后我们在第四节中描述了我们用于对比研究的仿真环境设置。精度/时间和协方差方面的详细比较分别见第五节和第六节。最后,我们在第七节中展示了真实世界数据集的实验结果。

Ⅱ. 问题公式化和不确定性

视觉 - 惯性状态估计问题包括推断相机 - 惯性(IMU)传感器组合的运动以及当传感器在场景中移动时由相机看到的3D地标的位置。通过收集(collecting)视觉测量(图像点)和惯性测量(加速度计和陀螺仪)的方程,问题可以写成非线性最小二乘(NLLS)优化问题,其目标是最小化目标函数( 例如,假设高斯误差)
(1) J ( θ ) = ∥ r V ( θ ) ∥ Σ V 2 + ∥ r I ( θ ) ∥ Σ I 2 J(\theta)=\| r^V(\theta)\|^2_{\Sigma_V}+\| r^I(\theta)\|^2_{\Sigma_I} \tag{1} J(θ)=rV(θ)ΣV2+rI(θ)ΣI2(1)

其中, ∥ r ∥ Σ 2 = r T Σ − 1 r \| r\|^2_{\Sigma}=r^T\Sigma^{-1}r rΣ2=rTΣ1r是残差向量 r r r的平方Mahalanobis范数,并使用测量的协方差矩阵 Σ \Sigma Σ加权。损失函数(1)可用在完全平滑[5]或固定滞后平滑[7]方法中。
方程(1)中的视觉项,包括测量图像点 x i j x_{ij} xij与米制重建得到的预测点 x ^ i j \hat x_{ij} x^ij间的重投影误差。假设使用针孔相机模型, x ^ i j ( θ ) ∝ K i ( R i T ∣ − R i T p i ) ( X j T , 1 ) T \hat x_{ij}(\theta)\propto K_i(R^T_i|-R^T_ip_i)(X^T_j,1)^T x^ij(θ)Ki(RiTRiTpi)(XjT,1)T,其中 ( R i , p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值