【音频处理】什么是残差矢量量化?

本文深入探讨了神经音频压缩,特别是残差矢量量化(RVQ)在现代音频编解码器中的应用。通过利用神经网络和级联码本,RVQ实现了高维度向量的有效量化,从而在降低计算成本的同时保持音频质量。随着技术的发展,神经压缩有望带来更高效、更可持续的数字生态系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、说明

二、神经压缩

三、神经音频编解码器和 RVQ

四、进一步阅读

五、最后的话


一、说明

        基于残差矢量量化的神经音频压缩方法正在重塑现代音频编解码器的格局。在本指南中,了解 RVQ 背后的基本思想以及它如何增强神经压缩。

        数据压缩在当今的数字世界中发挥着关键作用,促进信息的高效存储和传输。由于当今超过 80% 的互联网流量来自音频和视频流,

### PCA 主成分分析中的残差向量概念 在主成分分析 (PCA) 中,原始数据集被投影到新的坐标系上,该坐标系由主成分构成。这些主成分是彼此正交的方向,在这些方向上的方差最大[^1]。 当只保留前几个主要成分时,其余的信息则被认为是噪声或是次要信息。这部分未被捕获的信息可以通过 **残差向量** 来描述。具体来说,对于每一个样本点 \( \mathbf{x}_i \),其对应的重构向量为: \[ \hat{\mathbf{x}}_i = \sum_{j=1}^{k} z_{ij}\mathbf{v}_j \] 其中 \( k \) 表示所选的主成分数目;\( z_{ij} \) 是第 i 个样本沿 j 方向(即第 j 个主成分)的得分;而 \( \mathbf{v}_j \) 则代表相应的单位长度主成分向量。 因此,针对每个样本点 \( \mathbf{x}_i \),可以定义一个残差向量 \( \epsilon_i \): \[ \epsilon_i = \mathbf{x}_i - \hat{\mathbf{x}}_i \] 这表明了原数据点与其近似值之间的差异程度。通常情况下,随着选取更多数量的主成分来重建数据,残差将会减小。 为了更直观理解这一点,下面给出一段 Python 实现代码片段用于计算给定数据集中各条记录对应于特定数目主成分下的残差平方和: ```python import numpy as np from sklearn.decomposition import PCA def calculate_residuals(X, n_components): pca = PCA(n_components=n_components) X_reduced = pca.fit_transform(X) # Reconstruct the data using only 'n_components' components. X_approximated = pca.inverse_transform(X_reduced) residuals = X - X_approximated return residuals, np.sum(residuals ** 2, axis=1) # Example usage with a toy dataset: X = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0], [2.3, 2.7], [2, 1.6], [1, 1.1]]) residual_vectors, residual_sums_of_squares = calculate_residuals(X, 1) print("Residual vectors:\n", residual_vectors) print("\nSum of squared residuals per sample:", residual_sums_of_squares) ``` 此段程序展示了如何利用 `sklearn` 库执行 PCA 并获得指定数目的主成分之后的数据重建情况以及相应产生的误差项。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值