一、介绍
广义线性模型 (GLM) 是一个强大的统计框架,它扩展了经典线性回归模型以处理各种数据类型和分布。1970 年代,统计学家 John Nelder 和 Robert Wedderburn 引入了 GLM,已成为从流行病学和金融学到生态学和社会科学等领域不可或缺的工具。本文全面概述了 GLM,探讨了它们的基本概念、关键组件和实际应用。
在数据领域,环境和挑战一样多样化,广义线性模型就像多功能指南针,引导我们完成统计建模的复杂领域。GLM 具有适应性强,能够适应各种数据分布,是从最复杂和最多样化的数据集中获取见解的关键,确保没有统计挑战悬而未决。
二、GLM的基础
以线性回归为起点:传统的线性回归模型假设因变量(响应)和自变量(预测变量)之间存在线性关系。这适用于具有恒定方差的连续、正态分布数据。然而,真实世界的数据往往偏离这些假设。
泛化的必要性:GLM 的出现是对线性回归局限性的