视觉slam-----第五篇 ORB特征

视觉slam-----第五篇 ORB特征

特征点

为了估计相机的运动,我们需要从图像中选取比较有代表性的点。这些点在相机视角发生少量变化后会保持不变,所以我们会在各个图像中找到相同的点。然后,在这些点的基础上,讨论相机位姿估计问题,以及这些点的定位问题。在经典 SLAM 模型中,把它们称为路标。而在视觉 SLAM 中,路标则是指图像特征(Features)

特征是图像信息的另一种数字表达形式,在视觉里程计中,我们希望特征点在相机运动之后保持稳定。

常用的一些特征点算法,如著名的 SIFT, SURF,ORB等等,这些特征点能够拥有如下的性质:

  1. 可重复性(Repeatability):相同的“区域”可以在不同的图像中被找到。
  2. 可区别性(Distinctiveness):不同的“区域”有不同的表达。
  3. 高效率(Efficiency):同一图像中,特征点的数量应远小于像素的数量。
  4. 本地性(Locality):特征仅与一小片图像区域相关。

特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。

关键点是指该特征点在图像里的位置,有些特征点还具有朝向、大小等信息。

描述子通常是一个向量,按照某种人为设计的方式,描述了该关键点周围像素的信息。描述子是按照“外观相似的特征应该有相似的描述子”的原则设计的。

因此,只要两个特征点的描述子在向量空间上的距离相近,就可以认为它们是同样的特征点。

在slam中,由于ORB算法非常的快速,远大于SIFT和ORB算法,这里只介绍ORB特征。

ORB 特征

ORB 特征亦由关键点和描述子两部分组成。它的关键点称为“Oriented FAST”,是一种改进的 FAST 角点,它的描述子称为 BRIEF(Binary Robust Independent Elementary Features)。因此,提取 ORB 特征分为两个步骤:

  1. FAST 角点提取:找出图像中的” 角点”。相较于原版的 FAST, ORB 中计算了特征点的主方向,为后续的 BRIEF 描述子增加了旋转不变特性。
  2. BRIEF 描述子:对前一步提取出特征点的周围图像区域进行描述。
Oriented FAST角点检测

FAST 是一种角点,主要检测局部像素灰度变化明显的地方,以速度快著称。它的思想是:如果一个像素与它邻域的像素差别较大(过亮或过暗), 那它更可能是角点。过程如下:

在这里插入图片描述

  1. 在图像中选取像素 p p p,假设它的亮度为 I p I _ { p } Ip
  2. 设置一个阈值 T T T(比如 I p I _ { p } Ip的 20%)。
  3. 以像素 p p p为中心, 选取半径为 3 的圆上的 16 个像素点。
  4. 假如选取的圆上,有连续的 N N N 个点的亮度大于 I p + T I _ { p } + T Ip+T 或小于 I p − T I _ { p } - T I
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值