所谓偶数还是奇数,分别的关键在于是否存在 2 的因子。
- 偶数的平方还是偶数(因子2); 奇数的平方还是奇数(不会多出因子2);
- 偶数之间的乘法还是偶数(因子2); 奇数之间的乘法还是奇数(不会出现因子2);
奇数乘以偶数变为偶数(只要有偶数参与乘法,就一定包含因子 2);
- 两个连续的自然数相乘 n(n+1)2 一定是偶数(两个连续的自然数,一定一个是偶数(包含因子 2),一个是奇数),而乘法是一个吸收因子的过程;
2n-1 是第 n 个奇数,2n+1,则是第 n+1 个奇数
1. 分数
最简分数 pq (也即不存在公共因子), p,q 一定不会同时是偶数,但却可以同时是奇数。
2. 奇数
奇数
b
一定可以表示为:
b−1 之后一定是偶数, a 可以取 2;
3. 两个奇数相减一定是偶数
4. 半波长的偶数倍
λ2(⋅2⋅k) ⇒ k⋅λ
半波长的偶数倍即为波长的整数倍;
5. 奇数个 5、偶数个 5
- 奇数个 5,个位数一定是 5,或者说,如果一个整数的个位数字是 5,则其一定可以拆分为奇数个 5 的和;
- 偶数个 5,个位数一定是 0,或者说,如果一个整数的个位数字是 0,则其也一定可以拆分为偶数个 5 的和;
6. r 是整数, r2 是偶数
r2
是偶数,则
r2
必含有 2 的因子,当然也可以是 4 的因子。但是如果其仅是 2 的倍数,而不是 4 的倍数,则
r
必含有
7. -1
- 奇数减去1 ⇒ 偶数
- 偶数减去1 ⇒ 奇数
8. 奇数偶数与2的因子
一个奇数一定不会有和一个数共同的公因子 2;
static int NextPrime(int N){
if (N % 2 == 0)
++N;
for (; ; N += 2){
for (int i = 3; i*i <= N; i += 2) {
// 这里使用的就是 i += 2
// 而不是正常的 ++i
if (N % 2 == 0) {
...
}
}
}
}