激励函数对比分析

机器学习基础(七)——sigmoid 函数的性质
机器学习基础(五十六)—— tanh、sign 与 softsign
深度学习基础(十二)—— ReLU vs PReLU

  • sigmoid:单极性,连续,可导;

  • tanh:双极性,连续,可导;

    注意 tanh(双曲正切函数)形式不唯一,

    tanh ⁡ ( x ) = e x − e − x e x + e − x = 1 − e − 2 x 1 + e 2 x tanh ⁡ ( x ) = 1 − e − s 1 + e − s \begin{array}{rl} &\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}=\frac{1-e^{-2x}}{1+e^{2x}}\\ &\tanh(x)=\frac{1-e^{-s}}{1+e^{-s}} \end{array} tanh(x)=ex+exexex=1+e2x1e2xtanh(x)=1+es1es

1. 极性

  • sigmoid:单极性;单极性信号,就是或只有正信号,或只有负信号。
    • sigmoid 显然不是 zero-centered
  • tanh:双极性;双极性信号,就是既有正信号,也有负信号。
    • tanh 是 zero-centered 的;

2. 连续性

  • sigmoid、tanh:都是连续的;

3. 可导性

  • sigmoid: σ ′ ( x ) = σ ( x ) ( 1 − σ ( x ) ) \sigma'(x)=\sigma(x)\left(1-\sigma(x)\right) σ(x)=σ(x)(1σ(x)),即 sigmoid 函数的导数可以用其原函数表出;

    σ ′ ( x ) = σ ( x ) ( 1 − σ ( x ) ) \sigma'(x)=\sigma(x)\left(1-\sigma(x)\right) σ(x)=σ(x)(1σ(x)) 的这种导数形式,在于交叉熵代价函数结合时(也即构成复合函数形式),能将梯度化为十分精简的形式:

    C = − ( y ln ⁡ a + ( 1 − y ) ln ⁡ ( 1 − a ) ) , a = σ ( z ) ⇓ ∂    C ∂    z = − ( y a − 1 − y 1 − a ) σ ′ ( z ) = − ( y a − 1 − y 1 − a ) ⋅ a ( 1 − a ) = a − y C=-\left(y\ln a+\left(1-y\right)\ln(1-a)\right), \quad a=\sigma(z)\\ \Downarrow\\ \frac{\partial\; C}{\partial\; z}=-\left(\frac{y}{a}-\frac{1-y}{1-a}\right)\sigma'(z)=-\left(\frac{y}{a}-\frac{1-y}{1-a}\right)\cdot a\left(1-a\right)=a-y C=(ylna+(1y)ln(1a)),a=σ(z)zC=(ay1a1y)σ(z)=(ay1a1y)a(1a)=ay

  • tanh: tanh ⁡ ′ ( x ) = 1 − tanh ⁡ 2 ( x ) \tanh'(x)=1-\tanh^2(x) tanh(x)=1tanh2(x),也可由其原函数表出;

4. 输入数据是否需要归一化

  • sigmoid 激励函数:需要对输入数据归一化,因为更大的输入值,将使得 sigmoid 函数更容易达到饱和状态,
  • ReLU:因为不存在饱和的问题,也就不需要事先对输入数据进行归一化;

3. 收敛速度

  • ReLU 是 tanh 收敛速度的六倍;

4. 适用于哪些层

  • ReLU 仅适用于 hidden layers
    • 输出层:分类问题用 softmax,回归问题用 linear
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值