指数(道琼斯指数)

1. 道琼斯指数(Dow Jones Industrial Average)

通常人们所说的道琼斯指数有可能是指道琼斯指数四组中的第一组道琼斯工业平均指数(Dow Jones Industrial Average)。

### 使用Python实现道琼斯指数预测模型 为了构建一个有效的道琼斯指数预测模型,可以采用长短期记忆网络(LSTM),这是一种专门用于处理时间序列数据的深度学习算法。以下是具体方法: #### 数据准备 首先需要获取并预处理历史股价数据。这可以通过`pandas_datareader`库完成。 ```python import pandas as pd from pandas_datareader import data start_date = '2010-01-01' end_date = '2023-01-01' djia_prices = data.DataReader('^DJI', 'yahoo', start=start_date, end=end_date)['Adj Close'] ``` 接着对这些数据进行标准化处理以便于后续训练神经网络模型[^1]。 #### 构建特征集与标签 对于每一条记录,选取过去一段时间内的收盘价作为输入特征,并以前一天的价格变动情况为目标变量。 ```python def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 60 train_size = int(len(djia_prices) * 0.8) test_size = len(djia_prices) - train_size train, test = djia_prices[:train_size], djia_prices[train_size:] scaler = MinMaxScaler(feature_range=(0, 1)) train_scaled = scaler.fit_transform(train.values.reshape(-1, 1)) X_train, y_train = create_dataset(train_scaled, look_back) X_test, y_test = create_dataset(scaler.transform(test.values.reshape(-1, 1)), look_back) # Reshape input to be [samples, time steps, features] X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) ``` #### 定义LSTM模型结构 利用TensorFlow中的Keras API定义一个多层感知器架构,其中包含若干个LSTM单元以及全连接层来进行最终回归输出。 ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(units=1)) # Prediction of the next closing price model.compile(optimizer='adam', loss='mean_squared_error') history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.1) ``` #### 测试与评估性能 最后,在测试集中验证所建立模型的表现效果,并绘制图表展示实际值同预测结果之间的对比关系。 ```python predicted_stock_price = model.predict(X_test) predicted_stock_price = scaler.inverse_transform(predicted_stock_price) plt.figure(figsize=(14,5)) plt.plot(pd.to_datetime(test.index)[look_back:], predicted_stock_price, color='blue', label='Predicted DJIA Price') plt.plot(pd.to_datetime(test.index)[look_back:], test.values[look_back:], color='red', label='Real DJIA Price') plt.title('DJIA Stock Price Prediction with LSTM Model') plt.xlabel('Time') plt.ylabel('Stock Price') plt.legend() plt.show() ``` 通过上述过程能够建立起一套完整的基于LSTM的时间序列分析框架来尝试对未来股市走势做出合理推测[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值