1. 和式
- 1+3+5+⋯+(2n−1)=n2 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = n 2
2. 五边形数(pentagonal number)
五边形数的几何形式如下:

如何计算 P100 P 100 ?
将各个图形中的点拆分成如下左右两个部分:

- P1=0+1 P 1 = 0 + 1
- P2=1+(1+3) P 2 = 1 + ( 1 + 3 )
- P3=(1+2)+(1+3+5) P 3 = ( 1 + 2 ) + ( 1 + 3 + 5 )
- P4=(1+2+3)+(1+3+5+7) P 4 = ( 1 + 2 + 3 ) + ( 1 + 3 + 5 + 7 )
- ⋯ ⋯
所以有:
Pn====Pleft+Pright(1+2+3+⋯+n−1)+(1+3+5+⋯+2n−1)(n−1)(1+n−1)2+n2n(3n−1)2
P
n
=
P
l
e
f
t
+
P
r
i
g
h
t
=
(
1
+
2
+
3
+
⋯
+
n
−
1
)
+
(
1
+
3
+
5
+
⋯
+
2
n
−
1
)
=
(
n
−
1
)
(
1
+
n
−
1
)
2
+
n
2
=
n
(
3
n
−
1
)
2
判断一个数是不是五边形数:How do you determine if a number N is a Pentagonal Number?