Beta 分布归一化的证明(系数是怎么来的),期望和方差的计算

1. Γ(a+b)Γ(a)Γ(b) :归一化系数

Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa1(1μ)b1

面对这样一个复杂的概率密度函数,我们不禁要问, Γ(a+b)Γ(a)Γ(b) 是怎么来的,还有既然是一种分布,是否符合归一化的要求,即:

10Beta(μ|a,b)dμ=1

通过后续的求解我们将发现,这两者其实是同一个问题,即正是为了使得 Beta 分布符合归一化的要求,才在前面加了 Γ(a+b)Γ(a)Γ(b) ,这样复杂的归一化系数。

为了证明:

10Beta(μ|a,b)=110Γ(a+b)Γ(a)Γ(b)μa1(1μ)b1dμ10μa1(1μ)b1dμ=Γ(a)Γ(b)Γ(a+b)

进一步,根据 Γ(x)=0ettx1dt 的定义,我们首先来计算(令 t=x+y ):

Γ(a)Γ(b)======0exxa1dx0eyyb1dy0xa1{xet(tx)b1dt}dxtx0et{t0xa1(tx)b1dx}dtx=tμ0et{10(tμ)a1(ttμ)b1tdμ}dt0etta+b1dt10μa1(1μ)b1dμΓ(a+b)10μa1(1μ)b1dμ

因此:

10μa1(1μ)b1dμ=Γ(a)Γ(b)Γ(a+b)

2. 期望与方差的计算

首先来看期望:

E(μ)====10μΓ(a+b)Γ(a)Γ(b)μa1(1μ)b1dμΓ(a+b)Γ(a)Γ(b)10μa+11(1μ)b1dμΓ(a+b)Γ(a)Γ(b)Γ(a+1)Γ(b)Γ(a+1+b)aa+b

计算方差之前,首先计算二阶矩:

E(μ2)=Γ(a+b)Γ(a)Γ(b)Γ(a+2)Γ(b)Γ(a+2+b)=a(a+1)(a+b)(a+b+1)

因此方差:

var[μ]=E(μ2)E2(μ)=ab(a+b)2(a+b+1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值