maximum estimator method more known as MLE of a uniform distribution
[0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,…,xn ,我们知均匀分布的期望为: θ2 。
首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望。均匀分布的概率密度函数为: f(x|θ)=1θ,0≤x≤θ 。不失一般性地,将 x1,x2,…,xn 排序为顺序统计量: x(1)≤x(2)≤⋯≤x(n) 。则根据似然函数定义,在此样本集合上的似然函数为:
对 x(1)≥0,x(n)≤θ ,否则为 0。然后求其对数形式关于 θ 的导数:
导数小于 0,因此可以说 L(x|θ) 是单调减函数 θ≥x(n) ,因此当 θ=x(n) ( θ 能取到的最小值),也即 θ=max{x1,x2,…,xn} 时, L(x|θ) 值最大,则关于 θ 的最大似然估计为: