Python爬虫(47)Python异步爬虫与K8S弹性伸缩:构建百万级并发数据采集引擎
本文提出了一种基于Python异步爬虫与K8S弹性伸缩的分布式数据采集方案。针对金融风控领域面临的爬虫延迟(传统系统超12小时)、反爬对抗(IP限制10RPM)和成本问题(资源浪费40%),该方案通过优化异步引擎(aiohttp+uvloop)实现2000+并发连接,结合K8S智能扩缩容(HPA+Cluster Autoscaler)动态调整计算资源。生产数据显示,系统将数据采集延迟缩短至15分钟,峰值QPS达800+,错误率降至0.5%,同时通过预测式扩容使月成本降低62%,构建了高时效、低成本、强抗反爬
【云计算】【Kubernetes】 ⑥ K8S Pod优雅下线全解析:从preStop到Eureka下线实战
本文聚焦Kubernetes中Pod优雅下线的核心机制,通过preStop生命周期钩子解析服务治理的关键逻辑。以Eureka注册中心下线场景为例,结合Pod终止流程、Readiness Probe等核心概念,揭示K8S如何通过“温柔终止”避免服务中断。文章对比了K8S原生服务发现与传统注册中心(如Eureka)的差异,提出云原生架构下的演进方向。通过实战案例和源码片段,解析“硬下线”与“优雅下线”的本质区别,并提供从Eureka迁移至K8S原生服务发现的实践建议,是K8S服务治理领域的实用指南。
Ubuntu 22.04.5系统使用k8s v1.33.4部署若依微服务(ruoyi-cloud)运行容器使用containerd 1.7.13
摘要: 本文详细介绍了在Kubernetes集群上部署若依微服务系统的完整过程。主要内容包括: 集群规划:包含3个节点(1个master和2个worker)和1个Harbor仓库节点 环境准备:Ubuntu系统配置、网络设置、时区同步等基础环境搭建 Kubernetes集群部署:containerd运行时安装、kubeadm集群初始化、Calico网络插件配置 Harbor私有仓库搭建与配置 NFS存储动态供给实现 若依微服务组件部署:包含MySQL、Redis、Nacos等中间件,以及ruoyi-auth



