【ROS2机器人入门到实战】矩阵与矩阵运算

1.矩阵与矩阵运算

写在前面

  1. 当前平台文章汇总地址:ROS2机器人从入门到实战
  2. 获取完整教程及配套资料代码,请关注公众号<鱼香ROS>获取
  3. 教程配套机器人开发平台:两驱版| 四驱版
  4. 为方便交流,搭建了机器人技术问答社区:地址 fishros.org.cn

大家好,我是小鱼。本节我们来学习一下线性代数的基础中的矩阵部分,矩阵作为我们学习机器人学中最常用的基础知识,后面学习过程中我们会经常遇到,比如:表示旋转的旋转矩阵、坐标变换中的齐次矩阵、关节速度映射雅可比矩阵、仿真中的惯性矩阵等等。所以很有必要在正式学习之前,了解一下矩阵的概念及常用的矩阵定义。

1.矩阵介绍

1.1 矩阵定义

m ∗ n m*n mn个数 a i j ( i = 1 , 2 , . . , m ; j = 1 , 2... , n ) a_{ij}(i=1,2,..,m;j=1,2...,n) aij(i=1,2,..,m;j=1,2...,n)排成的m行n列的矩阵表格
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} a11a21am1a12a22am2a1na2namn
称为一个 m ∗ n m*n mn的矩阵,记为为 A A A ( a i j ) m ∗ n ( i = 1 , 2 , . . , m ; j = 1 , 2... , n ) (a_{ij})_{m*n}(i=1,2,..,m;j=1,2...,n) (aij)mn(i=1,2,..,m;j=1,2...,n),当 m = n m=n m=n时称 A A A n n n阶方阵.

矩阵就是一堆可能存在着某种联系数的组合,编号规则也很简单,第一行第一列的数编号为 a 11 a_{11} a11,第二行第一列叫做 a 21 a_{21} a21,以此类推

如果两个矩阵都是m*n个数组成,则称两个矩阵为同型矩阵。

1.2 零矩阵

所谓零矩阵,就是矩阵中每个数都是 0 0 0,比如一个 3 ∗ 3 3*3 33 0 0 0矩阵(零矩阵常用 O O O来表示)
O 3 ∗ 3 = [ 0 0 0 0 0 0 0 0 0 ] O_{3*3} =\begin{bmatrix}{0}&{0}&{0}\\{0}&{0}&{0}\\{0}&{0}&{0}\\\end{bmatrix} O33= 000000000

零矩阵是不是和自然数零一样神奇呢?

根据矩阵的运算法则,零矩阵有以下性质,下一节我们会来动手验证。

  • 任何矩阵(前提符合运算法则)与零矩阵相加、减结果都是其本身
    A − O = A A + O = A A-O=A \\ \\ A+O=A AO=AA+O=A

  • 零矩阵与任何矩阵的相乘结果都是零矩阵(注意,矩阵型号可能会变)

1.3 单位矩阵

主对角线上的元素都为 1 1 1,其余元素全为 0 0 0 n n n阶矩阵称为 n n n阶单位矩阵,常用符号 I I I表示,如 I 3 I3 I3
I 3 = [ 1 0 0 0 1 0 0 0 1 ] I_{3} =\begin{bmatrix}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\\\end{bmatrix} I3= 100010001

单位矩阵的性质与自然数1相似

根据矩阵的运算法则,单位矩阵有以下性质:

任何矩阵与单位矩阵的乘积结果为其本身
A I n = A I n B = B AI_n = A\\\\ I_nB = B AIn=AInB=B

2.矩阵的运算

2.1加减法运算

两个矩阵相加减,即其对应元素相加减。

设矩阵
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] , B = [ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b m 1 b m 2 ⋯ b m n ] A=\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix},B=\begin{bmatrix} {b_{11}}&{b_{12}}&{\cdots}&{b_{1n}}\\ {b_{21}}&{b_{22}}&{\cdots}&{b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {b_{m1}}&{b_{m2}}&{\cdots}&{b_{mn}}\\ \end{bmatrix} A= a11a21am1a12a22am2a1na2namn ,B= b11b21bm1b12b22bm2b1nb2nbmn

A ±    B = [ a 11 ±    b 11 a 12 ±    b 12 ⋯ a 1 n ±    b 1 n a 21 ±    b 21 a 22 ±    b 22 ⋯ a 2 n ±    b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 ±    b m 1 a m 2 ±    b m 2 ⋯ a m n ±    b m n ] A\pm\;B=\begin{bmatrix} {a_{11}\pm\;b_{11}}&{a_{12}\pm\;b_{12}}&{\cdots}&{a_{1n}\pm\;b_{1n}}\\ {a_{21}\pm\;b_{21}}&{a_{22}\pm\;b_{22}}&{\cdots}&{a_{2n}\pm\;b_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}\pm\;b_{m1}}&{a_{m2}\pm\;b_{m2}}&{\cdots}&{a_{mn}\pm\;b_{mn}}\\ \end{bmatrix} A±B= a11±b11a21±b21am1±bm1a12±b12a22±b22am2±bm2a1n±b1na2n±b2namn±bmn

只有两个矩阵为同型矩阵时才能进行加减运算。

运算性质

  • 交换律: A + B = B + A A+B=B+A A+B=B+A

  • 结合律: ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

  • 乘法结合律: ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

栗子:

A = [ 1 0 1 1 0 0 0 0 1 ] , B = [ 0 0 1 1 0 0 0 0 1 ] A=\begin{bmatrix}{1}&{0}&{1}\\{1}&{0}&{0}\\{0}&{0}&{1}\\\end{bmatrix},B=\begin{bmatrix}{0}&{0}&{1}\\{1}&{0}&{0}\\{0}&{0}&{1}\\\end{bmatrix} A= 110000101 ,B= 010000101
A + B = B + A = [ 1 0 2 2 0 0 0 0 2 ] A+B= B+A =\begin{bmatrix}{1}&{0}&{2}\\{2}&{0}&{0}\\{0}&{0}&{2}\\\end{bmatrix} A+B=B+A= 120000202

2.2乘法运算

乘法运算分为两种,一种是标量乘法,一种是矩阵乘法。

2.2.1 标量乘法

标量乘法即一个矩阵和一个数相乘。运算法则:将矩阵的每一个元素都乘上这个数即可

栗子:
A = [ 1 2 3 4 ] A = \begin{bmatrix}{1}&{2}\\{3}&{4}\\\end{bmatrix}\\ A=[1324]
2 × A = 2 × [ 1 2 3 4 ] = [ 2 × 1 2 × 2 2 × 3 2 × 4 ] = [ 2 4 6 8 ] 2\times A= 2\times \begin{bmatrix}{1}&{2}\\{3}&{4}\\\end{bmatrix} = \begin{bmatrix}{2 \times 1}&{2 \times 2}\\{2 \times 3}&{2 \times 4}\\\end{bmatrix} =\begin{bmatrix}{2}&{4}\\{6}&{8}\\\end{bmatrix} 2×A=2×[1324]=[2×12×32×22×4]=[2648]

2.2.2 矩阵运算
运算法则

设矩阵 A × B = C = ( c i j ) m ∗ n A\times B = C = (c_{ij})_{m*n} A×B=C=(cij)mn,则 C C C的第 i i i行第 j j j列的元素 c i j c_{ij} cij的值等于矩阵A的第 i i i行元素和矩阵B的第 j j j列元素两两乘积之和。

栗子:

设:
A = [ 1 2 3 4 ] , B = [ 1 0 0 3 ] A = \begin{bmatrix}{1}&{2}\\{3}&{4}\\\end{bmatrix}, B = \begin{bmatrix}{1}&{0}\\{0}&{3}\\\end{bmatrix} \\ A=[1324],B=[1003]


A × B = C = [ c 11 c 12 c 21 c 22 ] A \times B = C = \begin{bmatrix}{c_{11}}&{c_{12}}\\{c_{21}}&{c_{22}}\\\end{bmatrix} A×B=C=[c11c21c12c22]

c 11 = 1 ∗ 1 + 2 ∗ 0 = 1 c_{11} =1*1+2*0 = 1 c11=11+20=1

c 12 = 1 ∗ 0 + 2 ∗ 3 = 6 c_{12} =1*0+2*3 = 6 c12=10+23=6

c 21 = 3 ∗ 1 + 4 ∗ 0 = 3 c_{21} = 3*1+4*0 = 3 c21=31+40=3

c 22 = 3 + 0 + 4 ∗ 3 = 12 c_{22} = 3+0 + 4*3 = 12 c22=3+0+43=12

C = [ 1 6 3 12 ] C = \begin{bmatrix}{1}&{6}\\{3}&{12}\\\end{bmatrix} C=[13612]

乘积之和其实就是点乘运算,比如栗子:
a = [ 1 , 2 , 3 ] , b = [ 0 , 1 , 2 ] a ⋅ b = 1 ∗ 0 + 2 ∗ 1 + 3 ∗ 2 = 8 a = [1,2,3],b = [0,1,2]\\ a\cdot b =1*0+2*1+3*2 = 8 a=[1,2,3],b=[0,1,2]ab=10+21+32=8

矩阵的乘法的意义是非常有意思的,这里放一个链接,欢迎大家阅读: 矩阵乘法的本质是什么?

运算性质

尝试计算下上面栗子中的 B × A B\times A B×A的值,得到的结果依然是上面栗子中的 C C C吗?

答案:并不是,一般情况下,矩阵的乘法并不满足交换律

矩阵的运算规律:

  • 结合律
    ( A × B ) × C = A × ( B × C ) (A\times B)\times C = A \times(B\times C) (A×B)×C=A×(B×C)

  • 分配律
    A × ( B + C ) = A × B + A × C A\times(B+C) = A\times B + A\times C A×(B+C)=A×B+A×C

2.3转置运算

转置运算定义非常简单,将矩阵的对应行列元素互换(右上角加 T {T} T表示)
C = [ c 11 c 12 c 21 c 22 ] , C T = [ c 11 c 21 c 12 c 22 ] C = \begin{bmatrix}{c_{11}}&{c_{12}}\\{c_{21}}&{c_{22}}\\\end{bmatrix} ,C^{T} = \begin{bmatrix}{c_{11}}&{c_{21}}\\{c_{12}}&{c_{22}}\\\end{bmatrix} \\ C=[c11c21c12c22],CT=[c11c12c21c22]
栗子:
A = [ 1 2 3 4 ] , A T = [ 1 3 2 4 ] A = \begin{bmatrix}{1}&{2}\\{3}&{4}\\\end{bmatrix},A^T = \begin{bmatrix}{1}&{3}\\{2}&{4}\\\end{bmatrix} A=[1324],AT=[1234]
运算规律
( A T ) T = A (A^T)^T = A (AT)T=A

( A + B ) T = A T + B T (A+B)^T = A^T + B^T (A+B)T=AT+BT

( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

3.重要定义

3.1 矩阵的逆

3.1.1 定义

A , B A,B A,B是n阶方阵,E是n阶单位矩阵,若 A B = B A = E AB=BA=E AB=BA=E,则称 A A A是可逆矩阵,并称B是A的逆,且逆矩阵是唯一的,记作 A − 1 A^{-1} A1

这个我们本节课就不举栗子了,下节课我们使用代码来直接求。

注意:不一定所有的矩阵都是可逆的

3.1.2 运算规律

( A − 1 ) − 1 = A (A^{-1})^{-1} = A (A1)1=A

A B 可逆, ( A B ) − 1 = B − 1 A − 1 AB可逆,(AB)^{-1}=B^{-1}A^{-1} AB可逆,(AB)1=B1A1

4.总结

本节主要介绍了下矩阵的定义的一些性质,还有很多需要补充的,由于时间原因先发一下文章,小鱼要去录课了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值