我们用一个简单的生活案例来解释LSM-Tree的底层工作原理,让你一听就懂。
生活案例:小明的作业收集箱
场景设定
小明是班级的学习委员,每天要收集全班同学的作业(KEY-VALUE)。班上同学很多,作业交得很快,小明要既能快速收作业,又能随时帮老师查到某个同学的作业。
传统做法(比如B+树)
每有一个同学交作业,小明都要把作业插到作业柜里按学号排好。这样每次都要在柜子里找位置,效率很低,尤其是同学多的时候。
LSM-Tree的做法
1. 先用一个“收作业篮子”(内存表)
- 每有同学交作业,小明先把作业放进手边的篮子里(内存,速度极快)。
- 篮子满了怎么办?(比如装了100份)
2. 篮子满了就“打包进箱子”(SSTable)
- 小明把篮子里的作业按学号排好,装进一个大箱子(磁盘文件),并把箱子编号。
- 这个箱子就放到教室角落,不再动它。
3. 后台“整理箱子”(合并)
- 随着时间推移,箱子越来越多。
- 小明会定期把几个旧箱子合并成一个新箱子,把重复的作业(同学补交的)只保留最新的,旧的丢掉。
- 这样箱子数量不会无限增长,查找也不会变慢。
4. 查找作业
- 老师要查某个同学的作业,小明先看篮子(内存),找不到再去最新的箱子里找,再找更老的箱子。
- 每个箱子外面贴着“有无此同学作业”的小纸条(BloomFilter),能快速判断要不要打开箱子。
总结
- 写入快:先放篮子,攒一批再打包,避免频繁插入大柜子。
- 查找快:先查篮子,再查有限几个箱子,每个箱子有目录和小纸条帮忙。
- 后台整理:定期合并箱子,保持查找高效。
一句话总结
LSM-Tree就像小明收作业,先用篮子攒一批,满了再打包进箱子,查找时先看篮子再查箱子,后台定期整理箱子,既快又省力!
我们继续用“小明收作业”的生活案例,把LSM-Tree的底层原理再讲细一点,让你对每个环节都能有画面感。
1. 篮子(MemTable)和流水账(WAL)
- 篮子:小明手边的篮子就是LSM-Tree的“内存表”(MemTable),所有新交的作业都先放这里,速度极快。
- 流水账:小明怕篮子被打翻,边收作业边在小本子上记一笔(写前日志WAL),这样即使篮子掉了,凭小本子还能恢复。
2. 打包进箱子(SSTable)
- 打包时机:篮子满了(比如100份),小明把作业按学号排好,装进一个箱子(SSTable),箱子编号比如“第1箱”。
- 箱子特点:箱子一旦装好就不再动,里面的作业顺序排好,查找时可以很快定位。
3. 多层箱子(Level)
- 新箱子和旧箱子:随着时间推移,箱子越来越多。小明把新箱子放在上面,旧箱子在下面。
- 分层管理:小明把箱子分成几层,比如“第一层”放最新的箱子,“第二层”放合并后的大箱子,依次类推。每层箱子容量越来越大,数量越来越少。
4. 合并箱子(Compaction)
- 为什么要合并?
如果箱子太多,查找会变慢。小明定期把同一层的几个箱子合并成一个大箱子,把重复的作业(同学补交的)只保留最新的,旧的丢掉。 - 合并过程:
比如“第一层”有4个箱子,合并成1个大箱子,放到“第二层”,这样箱子数量就不会无限增长。
5. 查找作业的流程
- 先查篮子:老师要查小红的作业,小明先在篮子里找,最快。
- 再查箱子:找不到就查最新的箱子,再查更老的箱子。
- 小纸条(BloomFilter):每个箱子外面贴着“有无此同学作业”的小纸条,能快速判断要不要打开箱子,大大加快查找速度。
- 箱子里的目录(索引):箱子里有目录,能快速定位到某个同学的作业。
6. 删除和更新
- 删除:如果小明要删除某个同学的作业,其实是先在篮子里放一张“删除单”,等合并箱子时再真正把作业丢掉。
- 更新:同学补交作业时,新的作业会覆盖旧的,合并箱子时只保留最新的。
7. 为什么这样高效?
- 写入快:所有新作业都先放篮子,攒一批再打包,避免频繁插箱子。
- 查找快:查找时有篮子、箱子目录和小纸条帮忙,查找次数和时间都大大减少。
- 空间高效:定期合并箱子,清理重复和无用作业,空间不会浪费。
- 磁盘友好:打包和合并都是顺序操作,磁盘读写效率极高。
8. 现实中的“作业收集箱”应用
- RocksDB、LevelDB、HBase、TiKV等数据库和存储系统,底层都是用LSM-Tree这种“收作业打包合箱”的思路,支撑着海量数据的高效写入和查询。
总结一句话
LSM-Tree就像小明收作业,先用篮子攒一批,满了再打包进箱子,查找时有小纸条和目录帮忙,后台定期合箱,既快又省力,能应对全班甚至全校的作业高峰!