最简单的噪声函数公式解析

摘要

本文介绍了两种基础的噪声函数:白噪声(White Noise)和平滑噪声(Value Noise)。白噪声通过随机函数生成不连续的随机值,适合模拟雪花或静电效果。平滑噪声则通过在整数点生成随机值,并使用线性插值平滑过渡,使输出更自然。Value Noise是Perlin Noise等复杂噪声的基础思想,通过哈希函数保证结果一致性,适用于需要连续变化的场景。这两种方法为噪声生成提供了简单而有效的实现思路。


1. 最简单的噪声函数:白噪声(White Noise)

公式

最简单的噪声函数,其实就是给定一个输入 ( x ),输出一个随机值:

[
\text{noise}(x) = \text{random}()
]

  • 这里的 (\text{random}()) 每次都返回一个0到1之间的随机数(或-1到1之间)。
  • 这种噪声没有连续性,适合做“雪花点”、“静电”等效果。

例子

import random
def noise(x):
    return random.uniform(-1, 1)

2. 最简单的平滑噪声(Value Noise)

白噪声太“跳”,我们可以让它“平滑”一点。最简单的平滑噪声叫Value Noise,它的思想是:

  • 先在整数点上生成随机值
  • 在两个整数点之间,用插值平滑过渡

公式

假设 ( x ) 在 [i, i+1] 之间:

[
\text{noise}(x) = \text{lerp}(r_i, r_{i+1}, t)
]

  • ( r_i = \text{random}(i) ) :第i个格点的随机值
  • ( r_{i+1} = \text{random}(i+1) ) :下一个格点的随机值
  • ( t = x - i ) :x在区间内的位置
  • (\text{lerp}(a, b, t) = a \times (1-t) + b \times t) :线性插值

例子

import math

def random_hash(i):
    # 用哈希代替真正的随机,保证每次输入i输出一样
    return math.sin(i * 12.9898) * 43758.5453 % 1 * 2 - 1

def lerp(a, b, t):
    return a * (1 - t) + b * t

def value_noise(x):
    i = int(math.floor(x))
    t = x - i
    a = random_hash(i)
    b = random_hash(i + 1)
    return lerp(a, b, t)

3. 总结

  • 最简单的噪声函数就是“每次都给你一个随机数”,但这种噪声不连续。
  • 最简单的平滑噪声(Value Noise)就是“在整数点上随机,然后用插值平滑过渡”,这样变化就自然了。
  • 这就是Perlin Noise等复杂噪声的基础思想!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值