摘要
本文介绍了两种基础的噪声函数:白噪声(White Noise)和平滑噪声(Value Noise)。白噪声通过随机函数生成不连续的随机值,适合模拟雪花或静电效果。平滑噪声则通过在整数点生成随机值,并使用线性插值平滑过渡,使输出更自然。Value Noise是Perlin Noise等复杂噪声的基础思想,通过哈希函数保证结果一致性,适用于需要连续变化的场景。这两种方法为噪声生成提供了简单而有效的实现思路。
1. 最简单的噪声函数:白噪声(White Noise)
公式
最简单的噪声函数,其实就是给定一个输入 ( x ),输出一个随机值:
[
\text{noise}(x) = \text{random}()
]
- 这里的 (\text{random}()) 每次都返回一个0到1之间的随机数(或-1到1之间)。
- 这种噪声没有连续性,适合做“雪花点”、“静电”等效果。
例子
import random
def noise(x):
return random.uniform(-1, 1)
2. 最简单的平滑噪声(Value Noise)
白噪声太“跳”,我们可以让它“平滑”一点。最简单的平滑噪声叫Value Noise,它的思想是:
- 先在整数点上生成随机值
- 在两个整数点之间,用插值平滑过渡
公式
假设 ( x ) 在 [i, i+1] 之间:
[
\text{noise}(x) = \text{lerp}(r_i, r_{i+1}, t)
]
- ( r_i = \text{random}(i) ) :第i个格点的随机值
- ( r_{i+1} = \text{random}(i+1) ) :下一个格点的随机值
- ( t = x - i ) :x在区间内的位置
- (\text{lerp}(a, b, t) = a \times (1-t) + b \times t) :线性插值
例子
import math
def random_hash(i):
# 用哈希代替真正的随机,保证每次输入i输出一样
return math.sin(i * 12.9898) * 43758.5453 % 1 * 2 - 1
def lerp(a, b, t):
return a * (1 - t) + b * t
def value_noise(x):
i = int(math.floor(x))
t = x - i
a = random_hash(i)
b = random_hash(i + 1)
return lerp(a, b, t)
3. 总结
- 最简单的噪声函数就是“每次都给你一个随机数”,但这种噪声不连续。
- 最简单的平滑噪声(Value Noise)就是“在整数点上随机,然后用插值平滑过渡”,这样变化就自然了。
- 这就是Perlin Noise等复杂噪声的基础思想!