CloudCompare——采样滤波

本文详细介绍了点云采样的多种方法,包括随机采样、空间采样、八叉树采样及其变种,以及曲率采样。在CloudCompare软件中,这些方法各有其独特的算法原理和参数设置,可用于不同场景下的点云精简和处理。采样后的点云在保持关键信息的同时,显著减少了数据量。
摘要由CSDN通过智能技术生成

一、随机采样

1.算法原理及代码实现

见:[1]

2.软件实现

1、找到采样滤波的功能
在这里插入图片描述
2、选择随机采样并设置参数
在这里插入图片描述

  • remaing points:采样后剩余的点数。

3.结果展示

采样前
在这里插入图片描述
采样后
在这里插入图片描述

二、空间采样

1.算法原理

   在'spatial' 模式下,用户必须设置两点之间的最小距离。然后,CloudCompare将从原始云中拾取点,以便输出云中的任何点都不会比指定值更接近另一点。该值越大,保留的点数越少。

2.软件实现

1、找到采样滤波的功能
在这里插入图片描述
2、选择空间采样并设置参数
在这里插入图片描述

  • min space between points:设置两点之间的最小距离,该值越大,保留的点数越少。

3.结果展示

采样前
在这里插入图片描述
采样后
在这里插入图片描述

三、八叉树采样(1)

1.算法原理及代码实现

   'octree'模式需要选择八叉树的细分级别,点云将在该细分级别内“简化”——在八叉树的每个体素单元中,保留距八叉树单元中心最近的点。
实现代码见:[2]

2.软件实现

1、找到采样滤波的功能
在这里插入图片描述
2、选择八叉树采样并设置相关参数
在这里插入图片描述

  • subbdivision level:八叉树层级,级别越高,体素越小,保留点越多。
  • 在32位版本的CloudCompare中,八叉树最大层级为10,在64位版本中为21。
  • 该下采样方法是用八叉树体素中心的最近邻点代替该体素单元格内所有的点。

3.结果展示

采样前
在这里插入图片描述
采样后
在这里插入图片描述

四、八叉树采样(2)

1.算法原理及代码实现

   'Resample'模式需要选择八叉树的细分级别,可以实现将点云在该细分级别内下采样——在八叉树的每个体素单元中,保留八叉树单元的中心点。

2.软件实现

1、找到八叉树重采样功能
在这里插入图片描述
2、设置采样点个数
在这里插入图片描述

  • 设置采样点的个数
    此方法创建一个新的点云,其中的点不一定与输入点云中的点在空间中的位置相同。因此,不可能将输入点云的各种特征(颜色、法线、标量值等)附加到输出点上。(所以采样后为纯白色)

3.结果展示

采样前
在这里插入图片描述
采样后
在这里插入图片描述

五、曲率采样

1.算法原理及代码实现

见:[3]

2.软件实现

1、计算表面曲率
在这里插入图片描述

2、找到采样滤波的功能
在这里插入图片描述
3、选择曲率采样并设置相关参数

在这里插入图片描述

  • 参数为:曲率采样的采样率

3.结果展示

采样前
在这里插入图片描述

采样后
在这里插入图片描述

六、模型中采样点云

1.算法原理及代码实现

见:[4]

2.软件实现

可以指定要采样的点的总数(近似)或表面密度(每平方单位的点数)。该方法能够从原始网格导出法线和颜色信息(通过在每个三角形内插值这些信息)。因此,可以选择是否实际导出每个属性(如果可用)。
在这里插入图片描述

七、其他采样

   CloudCompare中还有很多很多很多上采样和下采样的方法,这里不再一一列举。

八、相关链接

[1] PCL 随机采样
[2] PCL 基于八叉树的体素滤波
[3] PCL 法线空间采样
[4] Open3D 从mesh中采样点云

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值